首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a unified framework for solving linear and convex quadratic programs via interior point methods. At each iteration, this method solves an indefinite system whose matrix is instead of reducing to obtain the usualAD 2 A T system. This methodology affords two advantages: (1) it avoids the fill created by explicitly forming the productAD 2 A T whenA has dense columns; and (2) it can easily be used to solve nonseparable quadratic programs since it requires only thatD be symmetric. We also present a procedure for converting nonseparable quadratic programs to separable ones which yields computational savings when the matrix of quadratic coefficients is dense.  相似文献   

2.
The problem of control in the presence of unknown but limited disturbance for a discrete-time linear system with polyhedral input and state bounds is investigated. Two problems are considered: that of reaching an assigned target set in the state space; and that of keeping the state in a given region using the available controls. In both cases, a solution is given via linear programming. A computational procedure for the control synthesis is proposed which can be implemented to obtain a feedback control.The author thanks Professor G. Leitmann for his helpful suggestions.  相似文献   

3.
Optimal control problem for linear two-dimensional (2-D) discrete systems with mixed constraints is investigated. The problem under consideration is reduced to a linear programming problem in appropriate Hubert space. The main duality relations for this problem is derived such that the optimality conditions for the control problem are specified by using methods of the linear operator theory. Optimality conditions are expressed in terms of solutions for conjugate system.  相似文献   

4.
5.
The purpose of this paper is to draw a detailed comparison between Newton's method, as applied to discrete-time, unconstrained optimal control problems, and the second-order method known as differential dynamic programming (DDP). The main outcomes of the comparison are: (i) DDP does not coincide with Newton's method, but (ii) the methods are close enough that they have the same convergence rate, namely, quadratic.The comparison also reveals some other facts of theoretical and computational interest. For example, the methods differ only in that Newton's method operates on a linear approximation of the state at a certain point at which DDP operates on the exact value. This would suggest that DDP ought to be more accurate, an anticipation borne out in our computational example. Also, the positive definiteness of the Hessian of the objective function is easy to check within the framework of DDP. This enables one to propose a modification of DDP, so that a descent direction is produced at each iteration, regardless of the Hessian.Efforts of the first author were partially supported by the South African Council for Scientific and Industrial Research, and those of the second author by NSF Grants Nos. CME-79-05010 and CEE-81-10778.  相似文献   

6.
Solving deterministic equivalent formulations of two-stage stochastic linear programs using interior point methods may be computationally difficult due to the need to factorize quite dense search direction matrices (e.g., AA T ). Several methods for improving the algorithmic efficiency of interior point algorithms by reducing the density of these matrices have been proposed in the literature. Reformulating the program decreases the effort required to find a search direction, but at the expense of increased problem size. Using transpose product formulations (e.g., A T A) works well but is highly problem dependent. Schur complements may require solutions with potentially near singular matrices. Explicit factorizations of the search direction matrices eliminate these problems while only requiring the solution to several small, independent linear systems. These systems may be distributed across multiple processors. Computational experience with these methods suggests that substantial performance improvements are possible with each method and that, generally, explicit factorizations require the least computational effort.  相似文献   

7.
Optimal control problems for bilinear systems are studied and solved with a view to approximating analogous problems for general nonlinear systems. For a given bilinear optimal control problem, a sequence of linear problems is constructed, and their solutions are shown to converge to the desired solution. Also, the direct solution to the Hamilton-Jacobi equation is analyzed. A power-series approach is presented which requires offline calculations as in the linear case (Riccati equation). The methods are compared and illustrated. Relations to classical linear systems theory are discussed.  相似文献   

8.
We show that the maximum principle holds for optimal periodic control problems governed by functional differential equations under a Lipschitz condition on the value functional. Generalizations to other boundary conditions are also considered.This research was partially supported by NSF Grant No. DMS-84-01719.The first author was partially supported by the Science Fund of the Chinese Academy of Sciences, Beijing, China.  相似文献   

9.
In this paper, by using the approximation of classical solution, we introduce the definition of solution and prove the existence and uniqueness of solutions of the first-order linear dynamic systems on time scales. Existence of Lagrange optimal control problem governed by the first-order linear dynamic systems on time scales is also presented. For illustration, some examples of optimal control problems on time scales are also discussed.  相似文献   

10.
In this paper, an interior point cutting plane method (IPCPM)is applied to solve optimal power flow (OPF) problems. Comparedwith the simplex cutting plane method (SCPM), the IPCPM is simpler,and efficient because of its polynomial-time characteristic.Issues in implementing IPCPM for OPF problems are addressed,including (1) how to generate cutting planes without using thesimplex tableau, (2) how to identify the basis variables inIPCPM, and (3) how to generate mixed integer cutting planes.The calculation speed of the proposed algorithm is further enhancedby utilizing the sparsity features of the OPF formulation. Numericalsimulations on IEEE 14-300-bus test systems have shown thatthe proposed method is effective.  相似文献   

11.
Infinite-dimensional parameter-dependent optimization problems of the form ‘minJ(u;p) subject to g(u)?0’ are studied, where u is sought in an L function space, J is a quadratic objective functional, and g represents pointwise linear constraints. This setting covers in particular control constrained optimal control problems. Sensitivities with respect to the parameter p of both, optimal solutions of the original problem, and of its approximation by the classical primal-dual interior point approach are considered. The convergence of the latter to the former is shown as the homotopy parameter μ goes to zero, and error bounds in various Lq norms are derived. Several numerical examples illustrate the results.  相似文献   

12.
Interior point methods for optimization have been around for more than 25 years now. Their presence has shaken up the field of optimization. Interior point methods for linear and (convex) quadratic programming display several features which make them particularly attractive for very large scale optimization. Among the most impressive of them are their low-degree polynomial worst-case complexity and an unrivalled ability to deliver optimal solutions in an almost constant number of iterations which depends very little, if at all, on the problem dimension. Interior point methods are competitive when dealing with small problems of dimensions below one million constraints and variables and are beyond competition when applied to large problems of dimensions going into millions of constraints and variables.In this survey we will discuss several issues related to interior point methods including the proof of the worst-case complexity result, the reasons for their amazingly fast practical convergence and the features responsible for their ability to solve very large problems. The ever-growing sizes of optimization problems impose new requirements on optimization methods and software. In the final part of this paper we will therefore address a redesign of interior point methods to allow them to work in a matrix-free regime and to make them well-suited to solving even larger problems.  相似文献   

13.
A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparatively coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples. Supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin. This paper appeared as ZIB Report 04-38.  相似文献   

14.
The stochastic optimal control of linear systems with time-varying and partially observable parameters is synthesized under noisy measurements and a quadratic performance criterion. The structure of the regulator is given, and the optimal solution is reduced to a two-point boundary-value problem. Comments on the numerical solution by appropriate integration schemes is included.  相似文献   

15.
A general convergence theorem for gradient algorithms in normed spaces is given and is applied to the unconstrained optimal control problem. A further application is given to time-lag systems of neutral type.This work was completed while the author held a Science Research Council Postdoctoral Fellowship at Loughborough University of Technology, Loughborough, Leicestershire, England.  相似文献   

16.
This paper presents an interior point method for the long-term generation scheduling of large-scale hydrothermal systems. The problem is formulated as a nonlinear programming one due to the nonlinear representation of hydropower production and thermal fuel cost functions. Sparsity exploitation techniques and an heuristic procedure for computing the interior point method search directions have been developed. Numerical tests in case studies with systems of different dimensions and inflow scenarios have been carried out in order to evaluate the proposed method. Three systems were tested, with the largest being the Brazilian hydropower system with 74 hydro plants distributed in several cascades. Results show that the proposed method is an efficient and robust tool for solving the long-term generation scheduling problem.  相似文献   

17.
For a finite-dimensional linear system, in which the control is restricted to belong to a completely arbitrary setJ, we give a simple necessary and sufficient condition for small-time local controllability from a pointp. The condition is equivalent to a characterization of the property that the Bellman function for the corresponding minimum-time optimal control problem is continuous atp.This work was partially supported by the National Science Foundation, Grant No. MCS-78-02442.  相似文献   

18.
A numerical algorithm to obtain the consistent conditions satisfied by singular arcs for singular linear–quadratic optimal control problems is presented. The algorithm is based on the Presymplectic Constraint Algorithm (PCA) by Gotay-Nester (Gotay et al., J Math Phys 19:2388–2399, 1978; Volckaert and Aeyels 1999) that allows to solve presymplectic Hamiltonian systems and that provides a geometrical framework to the Dirac-Bergmann theory of constraints for singular Lagrangian systems (Dirac, Can J Math 2:129–148, 1950). The numerical implementation of the algorithm is based on the singular value decomposition that, on each step, allows to construct a semi-explicit system. Several examples and experiments are discussed, among them a family of arbitrary large singular LQ systems with index 2 and a family of examples of arbitrary large index, all of them exhibiting stable behaviour. Research partially supported by MEC grant MTM2004-07090-C03-03. SIMUMAT-CM, UC3M-MTM-05-028 and CCG06-UC3M/ESP-0850.  相似文献   

19.
Methods are described for the numerical solution of singular optimal control problems. A simple method is given for solving a class of problems which form a transition from nonsingular to singular cases. A procedure is given for determining the structure of a singular problem if it is initially unknown. Several numerical examples are presented.This work is based on the author's PhD Dissertation at The Hatfield Polytechnic, Hatfield, Hertfordshire, England.  相似文献   

20.
In this paper, we consider the problem of the optimal flow control for a production system with one machine which is subject to failures and produces one part type. In most previous work, it has been assumed that the machine has exponential up and down times, i.e., its state process is a Markov process. The system considered in our study has general machine up and down times. Our main result is establishing monotone properties for the optimal control policy.This work was partially supported by the National Science Foundation under Grants DDM-9215368 and EDI-9212122. The authors thank two anonymous reviewers for helpful comments and suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号