首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper describes a preliminary investigation of the characteristics of high-speed water jets injected into water from an orifice. The high-speed jets were generated by the impact of a projectile launched by a horizontal single-stage powder gun and submerged in a water test chamber. The ensuing impact-driven high-speed water jets in the water were visualized by the shadowgraph technique, and the images were recorded by a high-speed digital video camera. The processes following such jet injection into water, the jet-induced shock waves, shock wave propagation, the bubble behavior, bubble collapse-induced rebound shock waves and bubble cloud re-generation were observed. Peak over-pressures of about 24 and 35 GPa measured by a Polyvinylidence difluoride (PVDF) piezoelectric film pressure sensor were generated by the jet impingement and the bubble impingement, respectively. The peak over-pressure was found to decrease exponentially as the stand-off distance between the PVDF pressure sensor and the nozzle exit increases.  相似文献   

2.
The present work reports an experimental investigation on bubble release through submerged orifices. Bubble frequency has been measured as a function of gas flow rate for three different orifice sizes at various pool heights. Needle type conductivity probe has been used for bubble count. Analysis of probe signal not only gives the bubble frequency but also indicates a transition from bubbling to jetting regime. Further, to validate the experimental observations a simple mechanistic model has been developed considering the evolution of non-spherical bubbles at the orifice mouth. Reasonable agreement between the model prediction and the experimental result has been observed.  相似文献   

3.
The flow around a gas bubble forming at a submerged orifice without vaporisation is analysed both with and without heat transfer taking place from the bubble surface. The results of experiments are given in which high-speed photography was used to study air bubbling through four different sizes of orifice into water, for the isothermal and diabatic case. A numerical solution of the dimensionless equations using Hamming's modified predictor-corrector method gave excellent agreement with experimental measurements of the bubble volume-time history for both stages of growth as well as predicting accurately the transition point between the two stages. Most of the heat transfer was found to occur almost immediately after the start of bubble growth  相似文献   

4.
水下欠膨胀高速气体射流的实验研究   总被引:14,自引:0,他引:14  
戚隆溪  曹勇  王柏懿 《力学学报》2000,32(6):667-675
采用实验途径研究了下水高速气体射流的动力学特性,研制了水下高速气体射流实验系统并发展了相应的测试手段。实验中,用插入式静压探针测量了射流轴线静压分布;用γ射线衰减法测量了径向空隙率分布,从而揭示了水下高速气体射流均压和掺混两个过程的基本规律。测量结果表明:水下高速气体射流在欠膨胀工况下运行时,近场将出现含有复杂波系结构的膨胀压缩区域,由于气水的掺混作用,水下欠膨胀气体射流均压化过程比空气中衰减得快。测量结果还表明,水下射流在近场区的混合层由气水两相占据,其流态从靠近气体侧的液滴流型过渡到靠近液体侧的气泡流型。  相似文献   

5.
Bubbly flow undergoing a steep pressure gradient   总被引:1,自引:0,他引:1  
The effects of a steep pressure gradient on bubbly flow were studied to determine the cause of noise emanating from components of a piping system. We used an orifice to generate a local pressure difference. The behavior of bubbles passing through the orifice was observed by using a video camera, and the noise was measured by a condenser microphone outside the pipe. It was found that the sound pressure level of noise generated by a bubbly flow was proportional to the pressure difference. An empirical formula for estimating noise level is proposed. The changes in size and number of bubbles passing through an orifice were found related to the breakup, which is affected by pressure difference rather than airflow rate. The breakup of a single bubble undergoing a steep pressure difference was observed to determine the mechanism of sound generation. It was found that a bubble was broken by impingement of an inward protrusion in the bubble. The growth rate of the protrusion depended on the pressure difference.  相似文献   

6.
Direct-contact condensation is studied by injecting steam downward through a pipe and out of the submerged end into a pool of subcooled water. The motion of the steam/water interface is recorded by high-speed movies and systematically classified, based on the injection rate and the pool subcooling. The resulting regime map shows the existence of three main condensation modes as the injection rate is reduced: At a high rate of steam injection (>125 kg/m2s) an oscillatory jet is observed. At a low rate of injection (<50 kg/m2s) a phenomenon called “steam chugging,” in which the pool water periodically enters the injection pipe, is observed. At intermediate injection rates an oscillatory bubble exists continuously at the pipe exit.  相似文献   

7.
This paper summarizes the results of a flow visualization study on the liquid motion around barbotage bubbles during growth and departure. Flow patterns, as well as for the first time, instantaneous velocities, are reported as a function of time and location about the bubbles. The experiments, employing the hydrogen-bubble technique and high-speed cine photography, were with: water as the liquid, air as the bubbled gas, orifice diameters of 0.116 and 0.252 cm, and different air flow rates; the two limiting cases of constant supply pressure and constant volumetric flow rate were covered. It was found that the liquid around a barbotage bubble assumes two velocity maxima, the first an outward maximum during bubble growth and the second in the opposite direction approximately at the time of bubble departure; further, liquid velocities were found to be higher close to the bubbling site. Certain differences in liquid velocities between the constant pressure and constant flow cases are explained in terms of available theoretical solutions to the bubble growth rate. Qualitative comparisons of the barbotage liquid flow patterns and those recently reported for boiling flow patterns are also presented.  相似文献   

8.
Temperature separation and friction losses in vortex tube   总被引:1,自引:0,他引:1  
The process of energy separation and friction losses in a vortex tube is studied in detail. The hot and cold exit air temperatures were measured. Experiments have been conducted at inlet pressure of 3.5, 5, 7.5 and 9 bar, at inlet temperature of 292.15 and 298.15 K and at cold air mass ratio from 0 to1. The results demonstrate that the hot air temperature reaches its maximum value at a cold air mass ratio of nearly 0.82, while the minimum value of cold air temperature is found at a cold air mass ratio of 0.3. Based on energy and mass balances as well as on the definition of internal energy and on experimental results a new model for the determination of hot and cold exit gas temperature has been developed. The model includes the relevant primary parameters and predicts the experimental results as well as the data published in the literature sufficiently accurate for engineering purposes.A cross-section area m3 - D diameter of the pipe m - F model parameter - f friction factor - L length of the tube m - m mass flow rate kg/s - y cold air mass ratio - P static pressure Pa - T temperature K - t thickness of the orifice m - R gas constant J/kg K - v velocity of fluid m/s - density of the fluid kg/m3 - friction factor for pipe - friction factor for orifice and tee junction - 1 inlet of compressed gas - 2 exit of hot gas - 3 exit of cold gas - atm atmospheric pressure - c cold exit gas - f friction - h hot exit gas - o orifice plate - T tee junction  相似文献   

9.
An abrasive water-jet cutting process is one in which water pressure is raised to a very high pressure and forced through a very small orifice to form a very thin high speed jet beam. This thin jet beam is then directed through a chamber and then fed into a secondary nozzle, or mixing tube. During this process, a vacuum is generated in the cham- ber, and garnet abrasives and air are pulled into the chamber, through an abrasive feed tube, and mixes with this high speed stream of water. Because of the restrictions introduced by the abrasive feed tube geometry, a vacuum gradient is generated along the tube. Although this phenomenon has been recog- nized and utilized as a way to monitor nozzle condition and abrasive flowing conditions, yet, until now, conditions inside the abrasive feed line have not been completely understood. A possible reason is that conditions inside the abrasive feed line are complicated. Not only compressible flow but also multi- phase, multi-component flow has been involved in inside of abrasive feed tube. This paper explored various aspects of the vacuum creation process in both the mixing chamber and the abrasive feed tube. Based on an experimental exploration, an analytical framework is presented to allow theoretical calculations of vacuum conditions in the abrasive feed tube.  相似文献   

10.
The effect of orifice shape on the mechanism of bubble formation in gas–liquid two-phase flow is investigated experimentally with three different orifice geometries regarding a circle, a square, and a triangle with same cross-sectional areas. The liquid and gas phases are purified water at 20 °C and air at room temperature, respectively. Gas is injected at the rate of 50–1200 mlph into a stagnant pool of liquid in distances of 5, 10, and 15 cm below the liquid surface. The position, velocity, and acceleration of bubbles are measured at bubbles’ centers of mass (CM) and the effects of these parameters on the bubble volume are investigated. Moreover, the forces acting on a bubble are balanced and the effects of geometry and gas flow rate on each force are presented. In addition, the changes of the acting forces versus time are plotted and discussed for a specific condition. Results show the bubbles formed with the square and circular orifice cross-sectional areas have the most and least volumes at detachment, respectively.  相似文献   

11.
Map of regimes of pressure oscillations induced by absorption during rapid injection of a soluble gas jet through a submerged nozzle into liquid, namely, oscillations during absorption, bubbling, internal chugging and small chugging, is suggested. Boundaries between various pressure oscillations regimes occurring when rapidly soluble gas is absorbed in water are investigated theoretically. It is showed that these boundaries are determined by four equations. It is showed that regime of high-frequency pressure oscillations during absorption occurs due to gas bubble oscillations, and other regimes of oscillations occur due to pressure oscillations in the whole system comprising the header, vent tubes and gas bubble. The conditions for excitation of high-frequency and low-frequency oscillations and boundaries between different regimes of pressure pulsations are determined. In a case when Henri's law for soluble gases is valid the developed model predicts that oscillations during absorption are not excited.  相似文献   

12.
Laboratory experiments have been performed on the flow of oil, water and air through a vertical pipe in order to study the gas-lift technique for oil–water flows. Special attention was paid to the phase inversion phenomenon, by which the continuous phase switches to the dispersed phase and vice versa. By using different types of gas injectors the influence of the bubble size of the injected air on the efficiency of the gas-lift technique (in particular at the point of phase inversion) was studied. Also the gas and liquid mixture velocities were varied. The air bubbles were detected by means of optical fibre probes. Local measurements of the time-averaged gas volume fraction, bubble size and bubble velocity were carried out, as well as pressure measurements.  相似文献   

13.
14.
The void fraction and the pressure waves in an air–water mixture flowing in the slug regime are experimentally investigated in a horizontal line. The test section is made of a transparent Plexiglas pipe with 26 mm ID and 26.24 m long, operating at ambient temperature and pressure. The flow induced transients are made by quickly changing the air or the water inlet velocity. The test grid has four operational points. This choice allows one to create expansion and compression waves due to the changes to the gas or to the liquid. Each experimental run is repeated 100 times to extract an ensemble average capable of filtering out the intrinsic flow intermittence and disclosing the void fraction and pressure waves’ features. The slug flow properties such as the bubble nose translational velocity, the lengths of liquid film underneath the bubble and the liquid slug are also measured. The objective of the work is two-fold: access the main characteristics of the void fraction and pressure waves and disclose the mechanics of the transient slug flow as described through the changes of the slug flow properties.  相似文献   

15.
The shape and size of a bubble formed slowly on a sharp- or round-edged orifice are derived with the help of a new analytical solution for the bubble profile. Two modes of formation are distinguished, depending on the natural contact angle, ?0: bubble confined to the orifice (?0 small); bubble spreading beyond the orifice (?0 large: Fritz mode). The limits of the slow-formation regime in mucleate pool boiling are estimated, involving an assessment of the influences of liquid inertia, viscosity and surface-tension gradients.“Slow” formation is predicted for large cavities or high pressures and this is borne out by data for water. The Fritz mode of growth, however, is seen to be suppressed.  相似文献   

16.
Results of a transient analysis predicting the general characteristics of steam chugging compare well with the results of two large scale experiments: GKM II, test 21 and GKSS, test 16. Predicted fundamental periods of chugging are within 5 and 16 per cent of the respective experimental values. The results of the analysis include effects of air in the drywell, momentum loss and heat transfer in the condensation pipe, direct contact condensation heat transfer at the gas-water interface and momentum and heat transfer in the wetwell water pool. Bubble shape is calculated in two-dimensional cylindrical coordinates.Required inputs to the analysis include the geometry, initial conditions and constants to determine both the steam inlet mass flowrate to the drywell as a function of time and conduction heat transfer through the wall of the condensation pipe. There are no arbitrary free parameters which must be specified to predict specific experiments. Rather, the analysis is based on fundamental physical phenomena, experimental coefficients documented for general heat transfer and fluid mechanics characteristics and standard analytical techniques.The random nature of steam chugging observed in some experiments is partially explained by predicted regimes of chugging and changes in the maximum extent of a bubble below the condensation pipe exit during each regime.  相似文献   

17.
A rectangular conduit with a closed end has water flowing in/out at the other end. The water level at the open end has an imposed sinusoidal movement. When this level is higher than the ceiling of the conduit, a certain mass of air is trapped under the ceiling. In a previous article (T.D. Nguyen, La Houille Blanche, No. 2, 1990), it was supposed that this air is flowing out freely through the ceiling, so the relative pressure at the water surface is zero, and the water hammer at the dead end of the conduit was calculated when the conduit was thoroughly filled. In this article, it is supposed that the trapped air is compressed isothermally or adiabatically. The set of equations is resolved (water continuity and movement equations, air state equation) by supposing a regime of flow at each section (section submerged or not), a certain value for the air pressure and by using the sweep method to determine the water flow characteristics. The air volume calculated by iteration must converge, and the calculated regimes at each section (submerged or free) must agree with the supposed regimes. The simulation is performed first with a horizontal conduit then with an inclined conduit. As expected, adiabatic compression gives higher pressure than isothermal compression. The simulation shows also that when there is an air cushion, compared with the case when air is flowing out freely, the shock of the water hammer at the closed end of the conduit is significantly reduced. This method is aimed at calculating the flow with entrapped air in the inlet/outlet tunnel of a hydroelectric plant, or in sewer system pipe when a sudden discharge surge (due to turbin opening/closing or to urban storm) changes a previously free‐surface flow in a mostly full‐pipe flow, but with some air entrapped under the ceiling. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
 A one-dimensional model is presented, which describes the transient two-phase flow in thin pipes during fast pressure drops and degassing by use of Eulerian and Lagrangian systems. The reduction in dimension is obtained by introduction of a geometry model for bubbly and slug flow regimes. The complete model includes the transient two-phase flow, bubble formation and bubble growth. The flow model predicts rising velocities of bubbles and plugs in arbitrary inclined highly accurate pipes. The mass transfer (diffusion) of the dissolved phase is calculated by the bubble growth model. The quality of the model was examined by simulation of experimental series, whereby water was depressurised from the saturation pressure of the dissolved gas mixture (air), by variation of saturation pressure, pressure gradient and pipe geometry. The results of numerical simulation fit the experimental data well. Received on 17 January 2000  相似文献   

19.
The design of a pneumatic droplet generator to produce small (~0.2 mm diameter) water droplets on demand is described. It consists of a cylindrical, liquid-filled chamber with a small nozzle set into its bottom surface, connected to a gas cylinder through a solenoid valve. Rapidly opening and closing the valve sends a pressure pulse to the liquid, ejecting a single droplet through the nozzle. Gas in the chamber escapes through a vent hole so that the pressure drops rapidly and more droplets do not emerge. We photographed droplets as they emerged from the nozzle, and recorded pressure fluctuations in the chamber. We determined the duration of the pressure pulse required to generate a single drop; longer pulses produced satellite drops. The length of the water jet when its tip detached and the diameter of the droplet that formed could be predicted using results from linear stability analysis. The peak pressure in the cavity could be increased by raising the supply pressure, increasing the width of the pressure pulse, or by reducing the size of the pressure relief vent.  相似文献   

20.
Flow regime transitions due to cavitation in the flow through an orifice   总被引:4,自引:0,他引:4  
This paper presents both experimental and theoretical aspects of the flow regime transitions caused by cavitation when water is passing through an orifice. Cavitation inception marks the transition from single-phase to two-phase bubbly flow; choked cavitation marks the transition from two-phase bubbly flow to two-phase annular jet flow.

It has been found that the inception of cavitation does not necessarily require that the minimum static pressure at the vena contracta downstream of the orifice, be equal to the vapour pressure liquid. In fact, it is well above the vapour pressure at the point of inception. The cavitation number [σ = (P3Pv)/(0.5 pV2); here P3 is the downstream pressure, Pv is the vapour pressure of the liquid, ρ is the density of the liquid and V is the average liquid velocity at the orifice] at inception is independent of the liquid velocity but strongly dependent on the size of the geometry. Choked cavitation occurs when this minimum pressure approaches the vapour pressure. The cavitation number at the choked condition is a function of the ratio of the orifice diameter (d) to the pipe diameter (D) only. When super cavitation occurs, the dimensionless jet length [L/(D - d); where L is the dimensional length of the jet] can be correlated by using the cavitation number. The vaporization rate of the surface of the liquid jet in super cavitation has been evaluated based on the experiments.

Experiments have also been conducted in which air was deliberately introduced at the vena contracta to simulate the flow regime transition at choked cavitation. Correlations have been obtained to calculate the critical air flow rate required to cause the flow regime transition. By drawing an analogy with choked cavitation, where the air flow rate required to cause the transition is zero, the vapour and released gas flow rate can be predicted.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号