首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potapov A  Goldfarb D 《Inorganic chemistry》2008,47(22):10491-10498
The coordination of bicarbonate to Mn (2+) is the simplest model system for the coordination of Mn (2+) to carboxylate residues in a protein. Recently, the structure of such a complex has been investigated by means of X-band pulse EPR (electron paramagnetic resonance) experiments ( Dasgupta, J. ; et al. J. Phys. Chem. B 2006, 110, 5099 ). Based on the EPR results, together with electrochemical titrations, it has been concluded that the Mn (2+) bicarbonate complex consists of two bicarbonate ligands, one of which is monodentate and other bidentate, but only the latter has been observed by the pulsed EPR techniques. The X-band measurements, however, suffer several drawbacks. (i) The zero-field splitting (ZFS) term of the spin Hamiltonian affects the nuclear frequencies. (ii) There are significant contributions from ENDOR (electron nuclear double resonance) lines of the M S not equal +/- (1)/ 2 manifolds. (iii) There are overlapping signals of (23)Na. All these reduce the uniqueness of the data interpretation. Here we present a high-field ENDOR investigation of Mn (2+)/NaH (13)CO 3 in a water/methanol solution that eliminates the above difficulties. Both Davies and Mims ENDOR measurements were carried out. The spectra show that a couple of slightly inequivalent (13)C nuclei are present, with isotropic and anisotropic hyperfine couplings of A iso1 = 1.2 MHz, T perpendicular1 = 0.7 MHz, A iso2 = 1.0 MHz, T perpendicular2 = 0.6 MHz, respectively. The sign of the hyperfine coupling was determined by variable mixing time (VMT) ENDOR measurements. These rather close hyperfine parameters suggest that there are either two distinct, slightly different, carbonate ligands or that there is some distribution in conformation in only one ligand. The distances extracted from T perpendicular1 and T perpendicular2 are consistent with a monodentate binding mode. The monodentate binding mode and the presence of two ligands were further supported by DFT calculations and (1)H ENDOR measurements. Additionally, (23)Na ENDOR resolved at least two types of (23)Na (+) in the Mn (2+)-bicarbonate complex, thus suggesting that the bicarbonate bridges two positively charged metal ions.  相似文献   

2.
The 17O hyperfine interaction of the water ligands and the V=O oxygen in the vanadyl aquo complex and of the water ligands in the Mn2+ aquo complex in a frozen solution were determined by W-band (95 GHz) electron-nuclear double resonance (ENDOR). Orientation selective ENDOR spectra of the vanadyl complex exhibited two distinct signals assigned to the vanadyl oxygen and the water ligands. The assignment of the signals was done based on the orientation of the principal axis system of the hyperfine interaction and through comparison with the hyperfine interaction predicted by DFT calculations. The latter showed good agreement with the experimental values thus providing clear evidence that the vanadyl oxygen is exchangeable. The interaction of the vanadyl oxygen, especially its anisotropic part, was significantly larger than that of the water oxygens due to a relatively large negative spin density on the oxygen p orbitals. The 17O hyperfine interaction of the water ligand in the Mn2+ complex was found to be similar to that of the water ligand in the vanadyl complex and was in good agreement with earlier single-crystal data. Here, due to the large thermal polarization, it was also possible to determine the absolute sign of the hyperfine coupling by selecting different EPR transitions.  相似文献   

3.
4.
X- and Q-band EPR and ENDOR spectroscopy was used to study the structure of a series of heteroleptic and homoleptic copper bis(oxazoline) complexes, based on the (-)-2,2'-isopropylidenebis[(4S)-4-phenyl-2-oxazoline] ligand and bearing different counterions (chloride versus triflate); labelled [Cu(II)()]. The geometry of the two heteroleptic complexes, [Cu(II)()] and [Cu(II)()], depended on the choice of counterion. Formation of the homoleptic complex was only evident when the Cu(II)(OTf)(2) salt was used (Cu(II)(Cl)(2) inhibited the transformation from heteroleptic to homoleptic complexes). The hyperfine and quadrupole parameters for the surrounding ligand nuclei were determined by ENDOR. Well resolved (19)F and (1)H couplings confirmed the presence of both coordinated water and TfO(-) counterions in [Cu()].  相似文献   

5.
A novel monomeric tetravalent manganese complex with the cross-bridged cyclam ligand 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (Me2EBC), [Mn(IV)(Me2EBC)(OH)2](PF6)2, was synthesized by oxidation of Mn(II)(Me2EBC)Cl2 with H2O2 in the presence of NH4PF6)in aqueous solution. The X-ray crystal structure determination of this manganese(IV) compound revealed that it contains two rare terminal hydroxo ligands. EPR studies in dry acetonitrile at 77 K show two broad resonances at g = 1.96 and 3.41, indicating that the manganese(IV) exists as a high-spin d3 species. Resonance Raman (rR) spectra of this manganese(IV) species reveal that the dihydroxy moiety, Mn(IV)(OH)2, is also the dominant species in aqueous solution (pH < 7). pH titration provides two pK(a) values, 6.86(4) and 10.0(1), associated with stepwise removal of the last two oxygen-bound protons from [Mn(IV)(Me2EBC)(OH)2](2+). The cyclic voltammetry of this manganese(IV) complex in dry acetonitrile at 298 K demonstrates two reversible redox processes at +0.756 and -0.696 V (versus SHE) for the Mn4+/Mn3+ and Mn3+/Mn2+ couples, respectively. This manganese(IV) complex is relatively stable in weak acidic aqueous solution but easily degrades in basic solution to manganese(III) derivatives with an 88 +/- 1% yield.  相似文献   

6.
High-field (95 GHz) pulsed EPR and electron-nuclear double resonance (ENDOR) techniques have been used for the first time to determine coordinates of ligand protons of a high-spin metal center in a protein single crystal. The protein concanavalin A contains a Mn(2+) ion which is coordinated to two water molecules, a histidine residue, and three carboxylates. Single crystals of concanavalin A were grown in H(2)O and in D(2)O to distinguish the exchangeable water protons from the nonexchangeable protons of the imidazole group. Distinct EPR transitions were selected by performing the ENDOR measurements at different magnetic fields within the EPR spectrum. This selection, combined with the large thermal polarization achieved at 4.5 K and a magnetic field of approximately 3.4 T allowed us to assign the ENDOR signals to their respective M(S) manifolds, thus providing the signs of the hyperfine couplings. Rotation patterns were acquired in the ac and ab crystallographic planes. Two distinct crystallographic sites were identified in each plane, and the hyperfine tensors of two of the imidazole protons and the four water protons were determined by simulations of the rotation patterns. All protons have axially symmetric hyperfine tensors and, by applying the point-dipole approximation, the positions of the various protons relative to the Mn(2+) ion were determined. Likewise, the water protons involved in H-bonding to neighboring residues were identified using the published, ultrahigh-resolution X-ray crystallographic coordinates of the protein (Deacon et al. J. Chem. Soc., Faraday Trans. 1997, 93(24), 4305-4312).  相似文献   

7.
The EPR parameters of the manganese site in the saccharide-binding protein concanavalin A have been studied by density functional methods, with an emphasis on metal (55Mn) and ligand (1H and 17O) hyperfine couplings, in comparison with high-field EPR and ENDOR data. Results for gradient-corrected and hybrid functionals with different exact-exchange admixture have been compared with experiment for the 55Mn and the 1H ligand hyperfine coupling and have been predicted for 17O hyperfine coupling based on comparison with experiment for the related [Mn(H2O)6]2+. Appreciable exact-exchange admixture in the hybrid functional is needed to obtain an adequate spin-density distribution and thus near-quantitative agreement with experimental EPR parameters. The common use of experimental proton hyperfine coupling tensors together with the point-dipole approximation for determination of bond lengths is evaluated by explicit calculations.  相似文献   

8.
Crystals of Zn2+/Mn2+ yeast enolase with the inhibitor PhAH (phosphonoacetohydroxamate) were grown under conditions with a slight preference for binding of Zn2+ at the higher affinity site, site I. The structure of the Zn2+/Mn2+-PhAH complex was solved at a resolution of 1.54 A, and the two catalytic metal binding sites, I and II, show only subtle displacement compared to that of the corresponding complex with the native Mg2+ ions. Low-temperature echo-detected high-field (W-band, 95 GHz) EPR (electron paramagnetic resonance) and 1H ENDOR (electron-nuclear double resonance) were carried out on a single crystal, and rotation patterns were acquired in two perpendicular planes. Analysis of the rotation patterns resolved a total of six Mn2+ sites, four symmetry-related sites of one type and two out of the four of the other type. The observation of two chemically inequivalent Mn2+ sites shows that Mn2+ ions populate both sites I and II and the zero-field splitting (ZFS) tensors of the Mn2+ in the two sites were determined. The Mn2+ site with the larger D value was assigned to site I based on the 1H ENDOR spectra, which identified the relevant water ligands. This assignment is consistent with the seemingly larger deviation of site I from octahedral symmetry, compared to that of site II. The ENDOR results gave the coordinates of the protons of two water ligands, and adding them to the crystal structure revealed their involvement in a network of H bonds stabilizing the binding of the metal ions and PhAH. Although specific hyperfine interactions with the inhibitor were not determined, the spectroscopic properties of the Mn2+ in the two sites were consistent with the crystal structure. Density functional theory (DFT) calculations carried out on a cluster representing the catalytic site, with Mn2+ in site I and Zn2+ in site II, and vice versa, gave overestimated D values on the order of the experimental ones, although the larger D value was found for Mn2+ in site II rather than in site I. This discrepancy was attributed to the high sensitivity of the ZFS parameters to the Mn-O bond lengths and orientations, such that small, but significant, differences between the optimized and crystal structures alter the ZFS considerably, well above the difference between the two sites.  相似文献   

9.
Paramagnetic diazabutadienegallium(II or III) complexes, [(Ar-DAB)2Ga] and [{(Ar-DAB*)GaX}2] (X = Br or I; Ar-DAB = {N(Ar)C(H)}2, Ar = 2,6-diisopropylphenyl), have been prepared by reactions of an anionic gallium N-heterocyclic carbene analogue, [K(tmeda)][:Ga(Ar-DAB)], with either "GaI" or [MoBr2(CO)2(PPh3)2]. A related InIII complex, [(Ar-DAB*)InCl2(thf)], has also been prepared. These compounds were characterised by X-ray crystallography and EPR/ENDOR spectroscopy. The EPR spectra of all metal(III) complexes incorporating the Ar-DAB ligand, [(Ar-DAB(.))MX(2)(thf)(n)] (M = Al, Ga or In; X = Cl or I; n = 0 or 1) and [(Ar-DAB)2Ga], confirmed that the unpaired spin density is primarily ligand centred, with weak hyperfine couplings to Al (a = 2.85 G), Ga (a = 17-25 G) or In (a = 26.1 G) nuclei. Changing the N substituents of the diazabutadiene ligand to tert-butyl groups in the gallium complex, [(tBu-DAB*)GaI2] (tBu-DAB={N(tBu)C(H)}2), changes the unpaired electron spin distribution producing 1H and 14N couplings of 1.4 G and 8.62 G, while the aryl-substituted complex, [(Ar-DAB*)GaI2], produces couplings of about 5.0 G. These variations were also manifested in the gallium couplings, namely aGa approximately 1.4 G for [(tBu-DAB*)GaI2] and aGa approximately 25 G for [(Ar-DAB*)GaI2]. The EPR spectra of the gallium(II) and indium(II) diradical complexes, [{(Ar-DAB*)GaBr}2], [{(Ar-DAB*)GaI}2], [{(tBu-DAB*)GaI}2] and [{(Ar-DAB*)InCl}2], revealed doublet ground states, indicating that the Ga-Ga and In-In bonds prevent dipole-dipole coupling of the two unpaired electrons. The EPR spectrum of the previously reported complex, [(Ar-BIAN*)GaI2] (Ar-BIAN = bis(2,6-diisopropylphenylimino)acenaphthene) is also described. The hyperfine tensors for the imine protons, and the aryl and tert-butyl protons were obtained by ENDOR spectroscopy. In [(Ar-DAB*)GaI2], gallium hyperfine and quadrupolar couplings were detected for the first time.  相似文献   

10.
With limited reductant and nitrite under anaerobic conditions, copper-containing nitrite reductase (NiR) of Rhodobacter sphaeroides yielded endogenous NO and the Cu(I)NO derivative of NiR. (14)N- and (15)N-nitrite substrates gave rise to characteristic (14)NO and (15)NO EPR hyperfine features indicating NO involvement, and enrichment of NiR with (63)Cu isotope caused an EPR line shape change showing copper involvement. A markedly similar Cu(I)NONiR complex was made by anaerobically adding a little endogenous NO gas to reduced protein and immediately freezing. The Cu(I)NONiR signal accounted for 60-90% of the integrated EPR intensity formerly associated with the Type 2 catalytic copper. Analysis of NO and Cu hyperfine couplings and comparison to couplings of inorganic Cu(I)NO model systems indicated approximately 50% spin on the N of NO and approximately 17% spin on Cu. ENDOR revealed weak nitrogen hyperfine coupling to one or more likely histidine ligands of copper. Although previous crystallography of the conservative I289V mutant had shown no structural change beyond the 289 position, this mutation, which eliminates the Cdelta1 methyl of I289, caused the Cu(I)NONiR EPR spectrum to change and proton ENDOR features to be significantly altered. The proton hyperfine coupling that was significantly altered was consistent with a dipolar interaction between the Cdelta1 protons of I289 and electron spin on the NO, where the NO would be located 3.0-3.7 A from these protons. Such a distance positions the NO of Cu(I)NO as an axial ligand to Type 2 Cu(I).  相似文献   

11.
12.
We have exploited the capacity of the "(SiP(iPr)(3))Fe(I)" scaffold to accommodate additional axial ligands and characterized the mononuclear S = ? H(2) adduct complex (SiP(iPr)(3))Fe(I)(H(2)). EPR and ENDOR data, in the context of X-ray structural results, revealed that this complex provides a highly unusual example of an open-shell metal complex that binds dihydrogen as a ligand. The H(2) ligand at 2 K dynamically reorients within the ligand-binding pocket, tunneling among the energy minima created by strong interactions with the three Fe-P bonds.  相似文献   

13.
本文用2-咪唑乙酸(Hiaa),2,2′-联吡啶,氢氧化钠和六水合高氯酸锰在水和乙醇中反应合成了1个二维配位化合物{[Mn(iaa)(2,2′-bipyridine)(H2O)](ClO4)}n (1)。单晶结构表明化合物1是1个新颖的二维双核锰配位聚合物,锰离子的配位构型为扭曲的八面体。每一个锰离子与3个配体配位,而每个配体与3个锰离子桥连。磁性研究表明1中Mn(Ⅱ)离子间存在弱的反  相似文献   

14.
The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.  相似文献   

15.
A new example of simultaneous reductive azo bond cleavage and oxidative azo bond formation in an azo-aromatic ligand is introduced. The chemical transformation is achieved by the reaction of Re(2)(CO)(10) with the ligand 2-[(2-N-Arylamino)phenylazo]pyridine (HL(1)). A new and unexpected mononuclear rhenium complex [Re(L(1))(L(3))] (1) was isolated from the above reaction. The new azo-aromatic ligand, H(2)L(3) (H(2)L(3) = 2, 2'-dianilinoazobenzene) is formed in situ from HL(1). A similar reaction of Re(2)(CO)(10) and a closely related azo-ligand, 2,4-ditert-butyl-6-(pyridin-2-ylazo)-phenol (HL(2)), resulted in a seven coordinated compound [Re(L(2)){(L(4))(?-)}(2)] (2; HL(4) = 2-amino-4,6-ditert-butyl-phenol) via reductive cleavage of the azo bond. The complexes have been characterized by using a host of physical methods: X-ray crystallography, nuclear magnetic resonance (NMR), cyclic voltammetry, ultraviolet-visible (UV-vis), electron paramagnetic resonance (EPR) spectroscopy, and density functional theory (DFT). The experimental structures are well reproduced by density functional theory calculations and support the overall electronic structures of the above compounds. Complex 1 is a closed shell singlet, while complex 2 exemplifies a singlet diradical complex where the two partially oxidized aminophenoleto ligands are coupled to each other, yielding the observed diamagnetic ground state. Complexes 1 and 2 showed two successive one-electron redox responses. EPR spectral studies in corroboration with DFT results indicated that all of the redox processes occur at the ligand center without affecting the trivalent state of the metal ion.  相似文献   

16.
Binuclear, mixed valence copper complexes with a [Cu(+1)(.5), Cu(+1)(.5)] redox state and S = (1)/(2) can be stabilized with rigid azacryptand ligands. In this system the unpaired electron is delocalized equally over the two copper ions, and it is one of the very few synthetic models for the electron mediating Cu(A) site of nitrous oxide reductase and cytochrome c oxidase. The spatial and electronic structures of the copper complex in frozen solution were obtained from the magnetic interactions, namely the g-tensor and the (63,65)Cu, (14)N, (2)H, and (1)H hyperfine couplings, in combination with density functional theory (DFT) calculations. The magnetic interactions were determined from continuous wave (CW) electron paramagnetic resonance (EPR), pulsed electron nuclear double resonance (ENDOR), two-dimensional TRIPLE, and hyperfine sublevel correlation spectroscopy (HYSCORE) carried out at W-band or/and X-band frequencies. The DFT calculated g and Cu hyperfine values were in good agreement with the experimental values showing that the structure in solution is indeed close to that of the optimized structure. Then, the DFT calculated hyperfine parameters were used as guidelines and starting points in the simulations of the various experimental ENDOR spectra. A satisfactory agreement with the experimental results was obtained for the (14)N hyperfine and quadrupole interactions. For (1)H the DFT calculations gave good predictions for the hyperfine tensor orientations and signs, and they were also successful in reproducing trends in the magnitude of the various proton hyperfine couplings. These, in turn, were very useful for ENDOR signals assignments and served as constraints on the simulation parameters.  相似文献   

17.
Multifrequency electron paramagnetic resonace (EPR) spectroscopy and electronic structure calculations were performed on [Co(4)O(4)(C(5)H(5)N)(4)(CH(3)CO(2))(4)](+) (1(+)), a cobalt tetramer with total electron spin S = 1/2 and formal cobalt oxidation states III, III, III, and IV. The cuboidal arrangement of its cobalt and oxygen atoms is similar to that of proposed structures for the molecular cobaltate clusters of the cobalt-phosphate (Co-Pi) water-oxidizing catalyst. The Davies electron-nuclear double resonance (ENDOR) spectrum is well-modeled using a single class of hyperfine-coupled (59)Co nuclei with a modestly strong interaction (principal elements of the hyperfine tensor are equal to [-20(±2), 77(±1), -5(±15)] MHz). Mims (1)H ENDOR spectra of 1(+) with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on the cobalt-bonding partner is significantly reduced from unity. Multifrequency (14)N ESEEM spectra (acquired at 9.5 and 34.0 GHz) indicate that four nearly equivalent nitrogen nuclei are coupled to the electron spin. Cumulatively, our EPR spectroscopic findings indicate that the unpaired spin is delocalized almost equally across the eight core atoms, a finding corroborated by results from DFT calculations. Each octahedrally coordinated cobalt ion is forced into a low-spin electron configuration by the anionic oxo and carboxylato ligands, and a fractional electron hole is localized on each metal center in a Co 3d(xz,yz)-based molecular orbital for this essentially [Co(+3.125)(4)O(4)] system. Comparing the EPR spectrum of 1(+) with that of the catalyst film allows us to draw conclusions about the electronic structure of this water-oxidation catalyst.  相似文献   

18.
19.
Two Mn(II) complexes are isolated and X-ray characterized, namely, cis-[(L(2))Mn(II)(Cl)(2)] (1) and [(L(3))Mn(II)Cl(OH(2))](ClO(4)) (2(ClO(4))), where L(2) and L(3) are the well-known tetradentate N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine and N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)propane-1,3-diamine ligands, respectively. The crystal structure reveals that whereas the ligand L(2) is in the cis-alpha conformation in complex 1, the ligand L(3) is in the more unusual cis-beta conformation in 2. EPR spectra are recorded on frozen solutions for both complexes and are characteristic of Mn(II) species. Electrochemical behaviors are investigated on acetonitrile solution for both complexes and show that cation 2 exists as closely related Mn(II) species in equilibrium. For both complexes exhaustive bulk electrolyses of acetonitrile solution are performed at oxidative potential in various experimental conditions. In the presence of 2,6-lutidine and after elimination of chloride ligands, the formation of the di-mu-oxo mixed-valent complexes [(L(2))Mn(III)(mu-O)(2)Mn(IV)(L(2))](3+) (3a) and [(L(3))Mn(III)(mu-O)(2)Mn(IV)(L(3))](3+) (4) is confirmed by UV-vis and EPR spectroscopies and cyclic voltammetry. In addition crystals of 4(ClO(4))(3) were isolated, and the X-ray structure reveals the cis-alphaconformation of L(3). In the absence of 2,6-lutidine and without elimination of the exogenous chloride ions, the electrochemical oxidation of 1 leads to the formation of the mononuclear Mn(III) complex, namely, [(L(2))Mn(III)(Cl)(2)](+) (5), as confirmed by UV-vis as well as parallel mode EPR spectroscopy and cyclic voltammetry. In the same conditions, the electrochemical oxidation of complex 2 is more intricate, and a thorough analysis of EPR spectra establishes the formation of the binuclear mono-mu-oxo mixed-valent [(L(3))ClMn(III)(mu-O)Mn(IV)Cl(L(3))](3+) (6) complexes. Electrochemical conversion of Mn(II) complexes into mixed-valent Mn(2)(III,IV) oxo-bridged complexes in the presence of 2,6-lutidine is discussed. The role of the chloride ligands as well as that of L(3) in the building of oxo bridges is discussed. Differences in behavior between L(2) and L(3) are commented on.  相似文献   

20.
Oxomanganese(V) species have been implicated in a variety of biological and synthetic processes, including their role as a key reactive center within the oxygen-evolving complex in photosynthesis. Nearly all mononuclear Mn(V)-oxo complexes have tetragonal symmetry, producing low-spin species. A new high-spin Mn(V)-oxo complex that was prepared from a well-characterized oxomanganese(III) complex having trigonal symmetry is now reported. Oxidation experiments with [FeCp(2)](+) were monitored with optical and electron paramagnetic resonance (EPR) spectroscopies and support a high-spin oxomanganese(V) complex formulation. The parallel-mode EPR spectrum has a distinctive S = 1 signal at g = 4.01 with a six-line hyperfine pattern having A(z) = 113 MHz. The presence of an oxo ligand was supported by resonance Raman spectroscopy, which revealed O-isotope-sensitive peaks at 737 and 754 cm(-1) assigned as a Fermi doublet centered at 746 cm(-1)(Δ(18)O = 31 cm(-1)). Mn Kβ X-ray emission spectra showed Kβ' and Kβ(1,3) bands at 6475.92 and 6490.50 eV, respectively, which are characteristic of a high-spin Mn(V) center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号