首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We discuss a possible mechanism to screen a cosmological constant in non-local gravity. We find that in a simple model of non-local gravity with the Lagrangian of the form, R+f(−1R)−2ΛR+f(1R)2Λ where f(X)f(X) is a quadratic function of X, there is a flat spacetime solution despite the presence of the cosmological constant Λ. Unfortunately, however, we also find that this solution contains a ghost in general. Then we discuss the condition to avoid a ghost and find that one can avoid it only for a finite range of ‘time’. Nevertheless our result suggests the possibility of solving the cosmological constant problem in the context of non-local gravity.  相似文献   

2.
A new class of cosmological models in f(R,T) modified theories of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011), where the gravitational Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor T, have been investigated for a specific choice of f(R,T)=f 1(R)+f 2(T) by considering time dependent deceleration parameter. The concept of time dependent deceleration parameter (DP) with some proper assumptions yield the average scale factor $a(t) = \sinh^{\frac{1}{n}}(\alpha t)$ , where n and α are positive constants. For 0<n≤1, this generates a class of accelerating models while for n>1, the models of universe exhibit phase transition from early decelerating phase to present accelerating phase which is in good agreement with the results from recent astrophysical observations. Our intention is to reconstruct f(R,T) models inspired by this special law for the deceleration parameter in connection with the theories of modified gravity. In the present study we consider the cosmological constant Λ as a function of the trace of the stress energy-momentum-tensor, and dub such a model “Λ(T) gravity” where we have specified a certain form of Λ(T). Such models may display better uniformity with the cosmological observations. The statefinder diagnostic pair {r,s} parameter has been embraced to characterize different phases of the universe. We also discuss the physical consequences of the derived models.  相似文献   

3.
We investigate cosmological consequences of a class of exponential f(R)f(R) gravity in the Palatini formalism. By using the current largest type Ia Supernova sample along with determinations of the cosmic expansion at intermediary and high-z   we impose tight constraints on the model parameters. Differently from other f(R)f(R) models, we find solutions of transient acceleration, in which the large-scale modification of gravity will drive the Universe to a new decelerated era in the future. We also show that a viable cosmological history with the usual matter-dominated era followed by an accelerating phase is predicted for some intervals of model parameters.  相似文献   

4.
This paper explores Noether and Noether gauge symmetries of anisotropic universe model in f(RT) gravity. We consider two particular models of this gravity and evaluate their symmetry generators as well as associated conserved quantities. We also find exact solution by using cyclic variable and investigate its behavior via cosmological parameters. The behavior of cosmological parameters turns out to be consistent with recent observations which indicates accelerated expansion of the universe. Next we study Noether gauge symmetry and corresponding conserved quantities for both isotropic and anisotropic universe models. We conclude that symmetry generators and the associated conserved quantities appear in all cases.  相似文献   

5.
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G5/6 support expansion of universe while those with f(G) = G1/2 do not favor the current expansion.  相似文献   

6.
In this paper, we consider F(R)=R+f(R) theory instead of Einstein gravity with conformal anomaly and look for its analytical solutions. Depending on the free parameters, one may obtain both uncharged and charged solutions for some classes of F(R) models. Calculation of Kretschmann scalar shows that there is a singularity located at r=0. The geometry of uncharged (charged) solution corresponds to the Schwarzschild (Reissner–Nordström) singularity. Further, we discuss the viability of our models in detail. We show that these models can be stable, depending on their parameters and in different epochs of the universe.  相似文献   

7.
We consider the Palatini formulation of f(RT) gravity theory, in which a non-minimal coupling between the Ricci scalar and the trace of the energy-momentum tensor is introduced, by considering the metric and the affine connection as independent field variables. The field equations and the equations of motion for massive test particles are derived, and we show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary, energy-momentum trace dependent metric, related to the physical metric by a conformal transformation. Similar to the metric case, the field equations impose the non-conservation of the energy-momentum tensor. We obtain the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra force, which is identical to the one obtained in the metric case. The thermodynamic interpretation of the theory is also briefly discussed. We investigate in detail the cosmological implications of the theory, and we obtain the generalized Friedmann equations of the f(RT) gravity in the Palatini formulation. Cosmological models with Lagrangians of the type \(f=R-\alpha ^2/R+g(T)\) and \(f=R+\alpha ^2R^2+g(T)\) are investigated. These models lead to evolution equations whose solutions describe accelerating Universes at late times.  相似文献   

8.
This paper determines the existence of Noether symmetry in non-minimally coupled f(RT) gravity admitting minimal coupling with scalar field models. We consider a generalized spacetime which corresponds to different anisotropic and homogeneous universe models. We formulate symmetry generators along with conserved quantities through Noether symmetry technique for direct and indirect curvature–matter coupling. For dust and perfect fluids, we evaluate exact solutions and construct their cosmological analysis through some cosmological parameters. We conclude that decelerated expansion is obtained for the quintessence model with a dust distribution, while a perfect fluid with dominating potential energy over kinetic energy leads to the current cosmic expansion for both phantom as well as quintessence models.  相似文献   

9.
This paper studies the boundedness of solutionsf of the initial-value problem for the space-homogeneous Boltzmann equation for inverse kth power forces, whenk>5, and under angular cutoff. The main result is that if the initial value isf 0 ? 0 with (1 + ¦υ¦20 εL 1 and (1 + ¦υ¦)s f 0ε L for somes > 2, then (1 + ¦υ¦s'f tεL fort>0 and essυ,t sup(1 + ¦υ¦)s'f(υ, t,) < ∞ for anys′ ? s whens ? 5, and anys′ ? s ifs > 5.  相似文献   

10.
He atoms have been excited by Ne+ ion impact and the depolarization of the fluorescence lines at 668 nm and 492 nm by magnetic and electric fields has been studied. The Ne+ ion energy could be chosen such that pure cascade level crossing signals were observed. From the widths of magnetic depolarization signals the radiative lifetimes τ(1s4f 1 F)=74(2) ns and τ(1s5f 1 F)=133(5) ns have been determined. By investigating the electric field splitting of the magnetic depolarization signals the tensor polarizabilities ¦α ten(1s4f 1 F)¦=0.58(1) kHz/(V/cm)2 and ¦α ten(1s5f 1 F)¦=4.2(1) kHz/(V/cm)2 have been deduced. From the latter value a mean frequencyv(1s5g?1s5f)=14.4 GHz of the transitions between the levels of the 1s5f configuration and those of the 1s5g configuration has been derived.α ten(1s4f 1 F) depends sensitively on the singlet-triplet mixing in the 1s4f configuration and thus a mixing coefficient could be deduced for this configuration.  相似文献   

11.
In this letter, we shall use a different f(R) action, coupled to two scalar fields, in order to obtain a new f(R) model of gravity. Then, within this model, we shall derive the standard cosmological quantities, related to the agegraphic dark energy model, and compare them to the straight results, coming from the dynamical implications of our model.  相似文献   

12.
f(RT) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(RT) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter–geometry coupling within the f(RT) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter–geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(RT) formalism in order to check its reliability in other fields, rather than cosmology.  相似文献   

13.
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.  相似文献   

14.
A system of minimally coupled nonlinear spinor and scalar fields within the scope of a Bianchi type-I (BI) cosmological model in the presence of a perfect fluid and a cosmological constant (Λ term) is studied, and solutions to the corresponding field equations are obtained. The problem of initial singularity and the asymptotical isotropization process of the Universe are thoroughly studied. The effect of the Λ term on the character of evolution is analyzed. It is shown that some special choice of spinor field nonlinearity generates a regular solution, but the absence of singularity results in violating the dominant energy condition in the Hawking-Penrose theorem. It is also shown that a positive Λ, which denotes an additional gravitational force in our case, gives rise to an oscillatory or a non-periodic mode of expansion of the Universe depending on the choice of problem parameter. The regular oscillatory mode of expansion violets the dominant energy condition if the spinor field nonlinearity occurs as a result of self-action, whereas, in the case of a linear spinor field or nonlinear one that occurs due to interaction with a scalar field, the dominant condition remains unbroken. A system with time-varying gravitational (G) and cosmological (Λ) constants is also studied to some extent. The introduction of magneto-fluid in the system generates nonhomogeneity in the energy-momentum tensor and can be exactly solved only under some additional condition. Though in this case, we indeed deal with all four known fields, i.e., spinor, scalar, electromagnetic, and gravitational, the over-all picture of evolution remains unchanged.  相似文献   

15.
In this paper the Friedmann universes containing(i) a massless real scalar field,(ii) a massive real scalar field,(iii) electromagnetic fields,(iv) the combined massive complex scalar and electromagnetic fields are investigated. In(i) the field has to be either purely spatial or else purely temporal and the latter case is completely solved. Similarly in(ii) the purely time-dependent case has been reduced to a single fourth order ordinary differential equation. In this case graphs of the numerical solutions have been exhibited. In(iii) as expected, no non-trivial solution exists. In(iv) all possible cases are studied. In case the complex wave function is a product of two non-constant functions, i.e. ψ=ξ(r)τ(t), there exists no solution. In the subcase gx(r)=ξ*(r)=constant, ¦τ(t)¦=constant the problem is completely solved. In the subcase ξ(r)=ξ*(r)=constant and ¦τ(t)¦ is non-constant, the system of equations boil down to the same fourth order ordinary differential equation as mentioned before. In the last two sub-cases, the time-dependent wave field carries electric charge density which, strangely enough, is decoupled from the electromagnetic fields.  相似文献   

16.
The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f(R,T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubbles parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f(R,T) model and investigate the modification R+f(T) in Bianchi type-II cosmology with an appropriate choice of a function f(T)=μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.  相似文献   

17.
We show that modified gravity presents distinctive nonlinear features on the Cosmic Microwave Background (CMB) anisotropies comparing with General Relativity (GR). We calculate the contribution to the CMB non-Gaussianity from nonlinear Sachs-Wolfe effect in f(R) gravity and show that, contrary to GR?s contribution which is typically ?O(1), the contribution in f(R) gravity is sensitive to the nonlinear structure of f(R) and can be large in principle. Optimistically, this gives an alternative origin for the possibly observed large CMB non-Gaussianities besides the primordial ones. On the other hand, such nonlinear features can be employed to provide a new cosmological test of f(R) or other modified theories of gravitation, which is unique and independent of previously known tests.  相似文献   

18.
Conformal transformation as a mathematical tool has been used in many areas of gravitational physics. In this paper, we consider gravity’s rainbow, in which the metric can be treated as a conformal rescaling of the original metric. By using the conformal transformation technique, we get a specific form of a modified Newton’s constant and cosmological constant in gravity’s rainbow, which implies that the total vacuum energy is dependent on probe energy. Moreover, the result shows that Einstein gravity’s rainbow can be described by energy-dependent \(f(E,\tilde{R})\) gravity. At last, we study the f(R) gravity, when gravity’s rainbow is considered, which can also be described as energy-dependent \(\tilde{f}(E,\tilde{R})\) gravity.  相似文献   

19.
In this paper, we investigate the late-time cosmic acceleration in mimetic f(RT) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from \(\mathcal {Q}(z)\) and the well-known particular model f(RT), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(RT) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(RT) gravity can be damped.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号