首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-(2′,5′-Dihydroxy-phenyl)-4(3H)-quinazolinone (DHPQ), a new fluorescent dye that exhibits excited state intramolecular proton transfer (ESIPT) reaction and possesses good photophysical properties, is synthesised and used as fluorescent probe for detection of Hg2+. Mercuric ions can be detected and quantitated by measuring the fluorescent intensity decrease of the probe. The decrease of fluorescence intensity of DHPQ upon the addition of Hg2+ was attributed to the blocking of ESIPT reactions of DHPQ and quenching its fluorescence. The analytical performance characteristics of the proposed Hg2+ probe were investigated. The probe can be applied to the quantification of Hg2+ with a concentration range covering from 8.0?×?10?7 to 2.0?×?10?4?mol?L?1, with a working pH range of 5.5–6.5. It shows excellent selectivity for Hg2+ over other transition metal cations. The proposed method was testified for the Hg2+ assay in river water samples with satisfying recoveries.  相似文献   

2.
A new spectrofluorimetric method was developed for the determination of trace amounts of lecithin using the ciprofloxacin (CIP)–terbium (Tb3+) ion complex as a fluorescent probe. In a buffer solution at pH=5.60, lecithin can remarkably reduce the fluorescence intensity of the CIP–Tb3+ complex at λ=545 nm. The reduced fluorescence intensity of the Tb3+ ion is proportional to the concentration of lecithin. Optimum conditions for the determination of lecithin were also investigated. The linear range and detection limit for the determination of lecithin were 1.0×10−6–3.0×10−5 mol L−1 and 3.44×10−7 mol L−1, respectively. This method is simple, practical, and relatively free of interference from coexisting substances. Furthermore, it has been successfully applied to assess lecithin in serum samples.   相似文献   

3.
We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg2+) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg2+ aptamer is rich in thymine (T) and readily forms T–Hg2+–T configuration in the presence of Hg2+. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg2+-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg2+ concentration through a five-decade range of 1 × 10−4 mol L−1 to 1 × 10−9 mol L−1. Even with the naked eye, we could identify micromolar Hg2+ concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg2+ over other metal cations including K+, Ba2+, Ni2+, Pb2+, Cu2+, Cd2+, Mg2+, Ca2+, Zn2+, Al3+, and Fe3+. The major advantages of this Hg2+ assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg2+ detection.  相似文献   

4.
Using the Hg2+-induced desulfurization reaction of thiosemicarbazide derivative, we designed and synthesized a novel “turn on” coumarin-based fluorescent probe L with a simple structure for detecting mercury ion (II). Spectroscopy revealed that the probe responds selectively to mercury ions over other metal ions with marked fluorescence enhancement. Detection of Hg2+ was effective at pH 7.0–9.5, with high selectivity and significant effect in HeLa cells, human umbilical vein endothelial cells and Escherichia coli, but no cytotoxicity. This probe could be an ideal and practical Hg2+ probe with important biological significance.  相似文献   

5.
A fluorescent probe 1 for Hg2+ based on a rhodamine-coumarin conjugate was designed and synthesized. Probe 1 exhibits high sensitivity and selectivity for sensing Hg2+, and about a 24-fold increase in fluorescence emission intensity is observed upon binding excess Hg2+ in 50% water/ethanol buffered at pH 7.24. The fluorescence response to Hg2+ is attributed to the 1:1 complex formation between probe 1 and Hg2+, which has been utilized as the basis for the selective detection of Hg2+. Besides, probe 1 was also found to show a reversible dual chromo- and fluorogenic response toward Hg2+ likely due to the chelation-induced ring opening of rhodamine spirolactam. The analytical performance characteristics of the proposed Hg2+-sensitive probe were investigated. The linear response range covers a concentration range of Hg2+ from 8.0 × 10−8 to 1.0 × 10−5 mol L−1 and the detection limit is 4.0 × 10−8 mol L−1. The determination of Hg2+ in both tap and river water samples displays satisfactory results.  相似文献   

6.
A new, highly sensitive probe L2 for the selective detection of Hg2+ in organo-aqueous (H2O:CH3CN, 1:1, v/v, HEPES buffer, pH 7.2) medium has been synthesized from rhodamine 6G-hydrazide and 4-nitroindole-3-carboxaldehyde. It was thoroughly characterized by physicochemical techniques including single crystal X-ray diffraction studies. The reaction of L2 with Hg2+ gives a 1:1 stoichiometry resulting in a 146 fold fluorescence enhancement and a binding constant (Kf) of 3?×?104 M?1. The spirolactam form of the probe is non-fluorescent; however, it shows dual channel (absorbance and fluorescence) recognition of Hg2+ via CHEF effect through the opening of the spirolactam ring. The quantum yields of L2 (0.00045) and L2-Hg2+ (0.29) show the higher stability of complex in the excited state over the free ligand. The 44.5?nM LOD value demonstrates the detection of Hg2+ at a very low concentration range. Cell imaging studies show the cytoplasmic recognition of Hg2+ by L2. Experimental results are comparable with theoretical values obtained by DFT studies. The fluorescence emission of the complex was completely quenched by I- and from the reversibility studies an advance level INHIBIT logic gate and memory device can be framed.  相似文献   

7.
Water-soluble luminescent CdSe quantum dots surface-modified with triethanolamine (TEA-CdSe-QDs) were prepared with high stability. The fluorescence of the TEA-CdSe-QDs was greatly quenched only when Hg2+ and I coexisted in the solution, whereas addition of either Hg2+ or I individually has no noticeable effect on the fluorescence emission. Such a unique quenching effect could be used for reciprocal recognition of mercury (II) ions and/or iodide anions in aqueous solution with rather high selectivity and sensitivity. The detection limits of Hg2+ or I ion were 1.9 × 10−7 mol L-1 or 2.8 × 10−7 mol L−1, respectively. The adequate experiments showed that iodine (I) anions could bridge between TEA-CdSe-QDs and Hg2+ to form a stable complex (QDs-I-Hg2+) and the following effective electron transfer from the QDs to the Hg2+ could be responsible for the fluorescence quenching of QDs.  相似文献   

8.
A simple and green analytical procedure based on chlorophyll a is presented for the determination of Hg2+ ion. Chlorophyll a was extracted and purified from the leaves of pea and is employed as a reagent for analysis of Hg2+ ion. It displays remarkable fluorescence emission at 674 nm when excited at 412 nm. The emission intensity decreased significantly on exposure to various concentrations of Hg2+ ion. This forms the basis for the determination of Hg2+ ion. The proposed method was evaluated for sensitivity and selectivity. The linear concentration range was found to be 2.0–10 μM with r2 = 0.997 and the limit of detection for Hg2+ ion was 1.3 μM. Ions including Pb2+, Cd2+, Ag+, Zn2+, Co2+, Ni2+, Cu2+, Mg2+, Mn2+, Ru3+, Er3+, K+, Na+, NH4+, Cl, NO3, CH3COO and SO42− did not interfere with the measurement of Hg2+ ion even at 500-fold excess. Since chlorophyll a is widely available in the leaves of most plants, and the extraction and purification process is simple, this technique can provide an alternative, sensitive and economical way to determine Hg2+ ion.  相似文献   

9.
An optical chemical sensor based on 2-mercaptopyrimidine (2-MP) in plasticized poly(vinyl chloride) (PVC) membrane incorporating (N,N-diethyl-5-(octadecanoylimino)-5H benzo[a]phenoxazine-9-amine (ETH 5294) and sodium tetraphenyl borate (NaTPB) for batch and flow-through determination of mercury ion is described. The response of the sensor is based on selective complexation of Hg2+ with 2-MP in the membrane phase, resulting in an ion exchange process between H+ in the membrane and Hg2+ in the sample solution. The influences of several experimental parameters, such as membrane composition, pH, and type and concentration of the regenerating reagent, were investigated. The sensor has a response range of 2.0 × 10−9 to 2.0 × 10−5 mol L−1 Hg2+ with a detection limit of 4.0 × 10−10 mol L−1 and a response time of ≤45 s at optimum pH of 6.5 with high measurement repeatability and sensor-to-sensor reproducibility. It shows high selectivity for Hg2+ over several transition metal ions, including Ag+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, and common alkali and alkaline earth ions such as Na+, K+, Mg2+, Ca2+, and Pb2+. The sensor membrane can be easily regenerated with dilute acid solutions. The sensor has been used for the determination of mercury ion concentration in water samples.  相似文献   

10.
Pyrene-tetramethylpiperidinyl (Pyr-Tempo) as a spin label fluorescent probe for iron(II) was synthesized. It exhibited weak fluorescence (λexcem = 346/399 nm) in aqueous solution due to an intramolecular quenching pathway. A method for determination of iron(II) was proposed based on the fluorescence enhancement of the probe in the presence of iron(II) in acidic medium. Under optimum conditions, the fluorescence enhancement of Pyr-Tempo is linearly proportional to the iron(II) concentration range of 6.0 × 10−8 to 9.6 × 10−6 mol L−1 with a detection limit of 8.0 × 10−9 mol L−1. The relative standard deviation (RSD) of six replicate measurements is 1.95% for 3.0 × 10−7 mol L−1 iron(II). The developed spin label fluorescence probe is found to be rapidly and sensitively responsive to iron(II) with high selectivity compared to existing fluorescence methods. The proposed method was successfully applied to iron(II) detection in five real samples with satisfactory results obtained by manual UV/Vis spectrophotometry (standard method) with 1,10-phenanthroline.  相似文献   

11.
Mercury complexes [Ph3AlkP]2+[Hg2I6]2− and [Ph3AlkP]2+[Hg4I10]2− (R = Me, Et, Pr, iso-Pr, Bu, iso-Bu) are synthesized by the reactions of triphenylalkylphosphonium Ph3AlkPI with mercury iodide in acetone with the mole ratio 1: 1 and 1: 2, respectively. According to X-ray diffraction data, the phosphorus atom in the cations of the [Ph3(iso-Pr)P]2+[Hg2I6]2−, [Ph3BuP]2+[Hg2I6]2−, and [Ph3(iso-Pr)P]2+[Hg4I10]2− complexes has a distorted tetrahedral coordination. The CPC bond angles and P-C bond lengths vary within 107.3(4)°-112.0(4)° and 1.774(8)-1.827(7) ?. In the [Hg2I6]2− centrosymmetric binuclear anions, the mercury atoms of tetrahedral coordination lie in two near-perpendicular Hg2I6planes. Hg4I4 eight-membered cycles of the [Hg4I10]2− tetranuclear anion are joined into polymeric chains through Hg … I coordination bonds (3.334, 3.681 &OA) due to which Hg atoms have a trigonal bipyramidal coordination. Original Russian Text ? V.V. Sharutin, V.S. Senchurin, N.N. Klepikov, O.K. Sharutina, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 2, pp. 267–273.  相似文献   

12.
A low‐molecular‐weight fluorescent probe 1 (M.W. = 238.24) based on aurone was synthesized, and its application in fluorescent detection of Hg2+ in aqueous solution and living cells was reported. It exhibited an “on–off” fluorescent response toward Hg2+ in aqueous solution. Both the color and fluorescence changes of the probe were remarkably specific for Hg2+ in the presence of other common metal ions, satisfying the selective requirements for biomedical and environmental monitoring application. The probe has been applied in direct measurement of Hg2+ content in river water samples and imaging of Hg2+ in living cells, which further indicates the potential application values in environmental and biological systems.  相似文献   

13.
合成了一种新的吡咯腙探针1,用于Hg2+的比色和荧光开启检测。探针1对Hg2+的检测限为45 nmol·L-1,缔合常数为5.78×108 L·mol-1。值得注意的是,工作pH范围为4.0~10.0。Job曲线和MS数据证实探针与Hg2+形成1:1的配合物。通过1H NMR、时间分辨荧光光谱和密度泛函理论(DFT)计算系统研究了探针与Hg2+的配位模式。此外,由于吗啉基团的存在,探针可以检测HeLa细胞溶酶体中的Hg2+。  相似文献   

14.
A fluorometric method for quantity analysis of biothiols was developed using a graphene oxide (GO)-based “molecular beacon”-like probe, which consisted of FITC labeled thymine (T)-rich single-stranded DNA (ssDNA), GO and Hg2+ ions. The labeled ssDNA containing T–T mismatches would self-hybridize to duplex in the presence of Hg2+, which can avoid its adsorption on GO and the fluorescence of this GO-based probe was recovered. The fluorescence of the probe quenched after the addition of biothiols such as glutathione (GSH) and cysteine (Cys) owing to thiol groups can selectively competitive ligation of Hg2+ ions with T–T mismatches. In the present work, the GO-based probe was used for the determination of GSH and Cys. Under the optimal conditions, a linear correlation was established between fluorescence intensity ratio I0/I and the concentration of GSH in the range of 2.0 × 10−9–5.0 × 10−7 mol L−1 with a detection limit of 1.0 × 10−9 mol L−1. The linear range for Cys is from 5.0 × 10−9 to 4.5 × 10−7 mol L−1 with a detection limit of 2.0 × 10−9 mol L−1. The proposed method was applied to the determination of GSH in human serum and cell extract samples with satisfactory results.  相似文献   

15.
Spiropyrans are the most studied families of func- tional materials due to their reversible structural con- version in response to external optical, chemical, and thermal stimulation[1]. Irradiation with ultraviolet light causes formation of an extended π-conjugation open form (merocyanine form) by heterolytic cleavage of the C (spiro)-O bond, which generates an intense ab- sorption in the visible region. Under the irradiating of visible light, the opened form will come back to the closed spi…  相似文献   

16.
A novel method for the determination of Pb2+ has been developed based on quenching of the fluorescence of thiol-capped CdTe quantum dots (QDs) by Pb2+ in aqueous solutions. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of Pb2+ between 2.0 × 10−6 and 1.0 × 10−4 mol L−1 with a detection limit of 2.7 × 10−7 mol L−1. The relative standard deviation (RSD) was 4.6% for a 4.0 × 10−5 mol L−1 Pb2+ solution (N = 5). As an application, the proposed method was successfully applied to the analysis of Pb2+ in food samples, and the results were satisfactory, i.e. consistent with those of flame atomic absorption spectrometry (FAAS). Correspondence: Heyou Han, College of Science, Institute of Chemical Biology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China  相似文献   

17.
Chen HQ  Fu J  Wang L  Ling B  Qian BB  Chen JG  Zhou CL 《Talanta》2010,83(1):139-144
With the biomolecule glutathione (GSH) as a capping ligand, Eu3+-doped cadmium sulfide composite nanoparticles were successfully synthesized through a straightforward one-pot process. An efficient fluorescence energy transfer system with CdS nanoparticles as energy donor and Eu3+ ions as energy accepter was developed. As a result of specific interaction, the fluorescence intensity of Eu3+-doped CdS nanoparticles is obviously reduced in the presence of Hg2+. Moreover, the long fluorescent lifetime and large Stoke's shift of europium complex permit sensitive fluorescence detection. Under the optimal conditions, the fluorescence intensity of Eu3+ at 614 nm decreased linearly with the concentration of Hg2+ ranging from 10 nmol L−1 to 1500 nmol L−1, the limit of detection for Hg2+ was 0.25 nmol L−1. In addition to high stability and reproducibility, the composite nanoparticles show a unique selectivity towards Hg2+ ion with respect to common coexisting cations. Moreover, the developed method was applied to the detection of trace Hg2+ in aqueous solutions. The probable mechanism of reaction between Eu3+-doped CdS composite nanoparticles and Hg2+ was also discussed.  相似文献   

18.
Mercury tracers are powerful tools that can be used to study mercury transformations in environmental systems, particularly mercury methylation, demethylation and reduction in sediments and water. However, mercury transformation studies using tracers can be subject to error, especially when used to assess methylation potential. The organic mercury extracted can be as low as 0.01% of the endogenous labeled mercury, and artefacts and contamination present during methylmercury (MeHg) extraction processes can cause interference. Solvent extraction methods based on the use of either KBr/H2SO4 or HCl were evaluated in freshwater sediments using 197Hg radiotracer. Values obtained for the 197Hg tracer in the organic phase were up to 25-fold higher when HCl was used, which is due to the coextraction of 197Hg2+ into the organic phase during MeHg extraction. Evaluations of the production of MeHg gave similar results with both MeHg extraction procedures, but due to the higher Hg2+ contamination of the controls, the uncertainty in the determination was higher when HCl was used. The Hg2+ contamination of controls in the HCl extraction method showed a nonlinear correlation with the humic acid content of sediment pore water. Therefore, use of the KBr/H2SO4 method is recommended, since it is free from these interferences. 197Hg radiotracer (T 1/2 = 2.673 d) has a production rate that is about 50 times higher than that of 203Hg (T 1/2 = 46.595 d), the most frequently used mercury radiotracer. Hence it is possible to obtain a similar level of performance to 203Hg when it is used it in short-term experiments and produced by the irradiation of 196Hg with thermal neutrons, using mercury targets with the natural isotopic composition. However, if the 0.15% natural abundance of the 196Hg isotope is increased, the specific activity of the 197Hg tracer can be significantly improved. In the present work, 197Hg tracer was produced from mercury 51.58% enriched in the 196Hg isotope, and a 340-fold increase in specific activity with respect to natural mercury targets was obtained. When this high specific activity tracer is employed, mercury methylation and reduction experiments with minimum mercury additions are feasible. Tracer recovery in methylation experiments (associated with Me197Hg production from 197Hg2+ spike, but also with Hg2+ contamination and Me197Hg artefacts) with marine sediments was about 0.005% g−1 WS (WS: wet sediment) after 20 h incubation with mercury additions of 0.05 ng g−1 WS, which is far below natural mercury levels. In this case, the amount of Hg2+ reduced to Hg0 (expressed as the percent 197Hg0 recovered with respect to the 197Hg2+ added) varied from 0.13 to 1.6% g−1 WS. Me197Hg production from 197Hg2+ spike after 20 h of incubation of freshwater sediment ranged from 0.02 to 0.13% g−1 WS with mercury additions of 2.5 ng g−1 WS, which is also far below natural levels. 197Hg0 recoveries were low, 0.0058 ± 0.0013% g−1 WS, but showed good reproducibility in five replicates. Me197Hg production from 197Hg2+ spiked in freshwater samples ranged from 0.1 to 0.3% over a period of three days with mercury additions of 10 ng L−1. A detection limit of 0.05% for Me197Hg production from 197Hg2+ spike was obtained in seawater in a 25 h incubation experiment with mercury additions of 12 ng L−1.  相似文献   

19.
1,3,5,7-Tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)difluoroboradiaza-s-indacene (TMBB-Su), a new BODIPY-based fluorescent probe, was designed and synthesized for the labeling of amino compounds. It was used as a pre-column derivatizing reagent for determination of amino acid neurotransmitters by high-performance liquid chromatography (HPLC). The fluorescence quantum yield in acetonitrile increased from 0.84 to 0.95 when it reacted with amino acid neurotransmitters. Derivatization of TMBB-Su with seven amino acid neurotransmitters was completed within 30 min at 25 °C in 24.0 mmol L−1 pH 7.8 boric acid buffer. The separation was performed on a C18 column with methanol–water–buffer 55:35:10 (v/v) as mobile phase (buffer: 0.10 mol L−1 H3Cit–0.10 mol L−1 NaOH). Interference from the other concomitant amino acids was eliminated successfully by means of pH gradient elution. With fluorescence detection at 494 and 504 nm for excitation and emission, respectively, the limits of detection (signal-to-noise ratio = 3) were from 2.1 to 12.0 nmol L−1. The proposed method has been used to determine amino acid neurotransmitters in the cerebral cortex of mice with cerebral ischemia at the convalescence stage with satisfactory recoveries varying from 94.9 to 105.2%.  相似文献   

20.
An analytical method using an optical probe in a photoelectrochemical cell for the sensitive and selective determination of aqueous Hg2+ is presented. A previously synthesized Hg2+ selective chemosensor, proven to be Hg2+ sensitive up to 2 μg L−1, has been immobilized onto indium tin oxide (ITO) electrodes in a composite form with polyaniline. The coated ITO electrode was placed in a photoelectrochemical cell under closed circuit conditions in which the optical recognition of the chemosensor was converted to a measurable signal. A composite of the fluorescent chemosensor, Rhodamine 6G derivative (RS), and polyaniline (PANI) was immobilized on ITO glass plates and subjected to photovoltage measurements in the absence and presence of Hg2+. The optical responses of the coated electrode were used to determine the sensitivity and selectivity of the immobilized sensor to Hg2+ in the presence of background ions. The optical response of the PANI-dye coated electrode increased linearly with increasing Hg2+ concentration in the range 10-150 μg L−1, with a detection limit of 6 μg L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号