首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated adsorption of an O(2) molecule on a double-walled carbon nanotube (DWCNT) edge using density functional theory calculations. An O(2) molecule adsorbs exothermally without an adsorption barrier at open nanotube edges that are energetically favorable with a large adsorption energy of about -9 eV in most cases. Dissociative adsorption of an O(2) molecule induces various spontaneous lip-lip interactions via the bridged carbon atoms, generating the closed tube ends. This explains why the DWCNTs are chemically more stable than the single-walled nanotubes during observed field emission experiments. The field emission takes place via the localized states of the bridged carbon atoms, not via those of the adsorbed oxygen atoms particularly in the armchair nanotubes. We also find that some O(2) precursor states exist as a bridge between tube edges.  相似文献   

2.
We have used atomically detailed simulations to examine the adsorption and transport diffusion of CO2 and N2 in single-walled carbon nanotubes at room temperature as a function of nanotube diameter. Linear and spherical models for CO2 are compared, showing that representing this species as spherical has only a slight impact in the computed diffusion coefficients. Our results support previous predictions that transport diffusivities of molecules inside carbon nanotubes are extremely rapid when compared with other porous materials. By examining carbon nanotubes as large as the (40,40) nanotube, we are able to compare the transport rates predicted by our calculations with recent experimental measurements. The predicted transport rates are in reasonable agreement with experimental observations.  相似文献   

3.
Fourier transform infrared spectroscopy is used to study CO adsorption in single-walled carbon nanotubes. Evidence for adsorption in endohedral and groove/external surface sites is presented through displacement studies involving both CO and CO2. Blue-shifted CO stretching frequencies also indicate that CO hydrogen bonds to hydroxyl functionalities created on the nanotubes by acid purification steps. N2 surface area measurements are used to further understand the porosity of the nanotube samples and to help explain the spectroscopic results.  相似文献   

4.
Multiwall carbon nanotubes (MWNTs) were synthesized via the decomposition of CCl4 in supercritical CO2 at 175 degrees C and 27.6 MPa using an iron-encapsulated dendrimer as a growth catalyst. The average diameter of resultant nanotubes was 20-25 nm, obtained after a 24-h reaction time. Our conditions represent the first application for CX4 precursors, as well as the lowest-reported temperature regime for carbon nanotube growth, allowing the use of other temperature-sensitive catalytic substrates.  相似文献   

5.
Recent advances in the production of carbon nanotubes (CNTs) are reviewed with an emphasis on the use of carbon dioxide (CO2) as a sole source of carbon. Compared to the most widely used carbon precursors such as graphite, methane, acetylene, ethanol, ethylene, and coal-derived hydrocarbons, CO2 is competitively cheaper with relatively high carbon yield content. However, CNT synthesis from CO2 is a newly emerging technology, and hence it needs to be explored further. A theoretical and analytical comparison of the currently existing CNT-CO2 synthesis techniques is given including a review of some of the process parameters (i.e., temperature, pressure, catalyst, etc.) that affect the CO2 reduction rate. Such analysis indicates that there is still a fundamental need to further explore the following aspects so as to realize the full potential of CO2 based CNT technology: (1) the CNT-CO2 synthesis and formation mechanism, (2) catalytic effects of transitional metals and mechanisms, (3) utilization of metallocenes in the CNT-CO2 reactions, (4) applicability of ferrite-organometallic compounds in the CNT-CO2 synthesis reactions, and (5) the effects of process parameters such as temperature, etc.  相似文献   

6.
Recent advances in the production of carbon nanotubes (CNTs) are reviewed with an emphasis on the use of carbon dioxide (CO2) as a sole source of carbon. Compared to the most widely used carbon precursors such as graphite, methane, acetylene, ethanol, ethylene, and coal-derived hydrocarbons, CO2 is competitively cheaper with relatively high carbon yield content. However, CNT synthesis from CO2 is a newly emerging technology, and hence it needs to be explored further. A theoretical and analytical comparison of the currently existing CNT-CO2 synthesis techniques is given including a review of some of the process parameters (i.e., temperature, pressure, catalyst, etc.) that affect the CO2 reduction rate. Such analysis indicates that there is still a fundamental need to further explore the following aspects so as to realize the full potential of CO2 based CNT technology: (1) the CNT-CO2 synthesis and formation mechanism, (2) catalytic effects of transitional metals and mechanisms, (3) utilization of metallocenes in the CNT-CO2 reactions, (4) applicability of ferrite-organometallic compounds in the CNT-CO2 synthesis reactions, and (5) the effects of process parameters such as temperature, etc.  相似文献   

7.
We report the synthesis and characterization for the first examples of monolithic low-density carbon aerogel (CA) nanocomposites containing double-walled carbon nanotubes. The CA nancomposites were prepared by the sol-gel polymerization of resorcinol and formaldehyde in an aqueous surfactant-stabilized suspension of double-walled carbon nanotubes (DWNTs). The composite hydrogels were then dried with supercritical CO 2 and subsequently carbonized under an inert atmosphere to yield monolithic CA structures containing uniform dispersions of DWNTs. The microstructures and electrical conductivities of these CA nanocomposites were evaluated for different DWNT loadings. These materials exhibited high BET surface areas (>500 m (2)/g) and enhanced electrical conductivities relative to pristine CAs. The details of these results are discussed in comparison with theory and literature.  相似文献   

8.
Single walled carbon nanotubes (SWCNTs) were synthesized using four different carbon precursors including CO, C2H5OH, CH3OH, and C2H2 on Co-Mo catalysts. Semiconducting (n,m) abundance was evaluated by a method based on a single-particle tight-binding theoretical model taking into consideration the relative photoluminescence and absorption quantum efficiency for specific (n,m) tubes. (n,m) abundance determined in photoluminescence analysis was used to reconstruct the near-infrared Es11 absorption spectra. Carbon precursor pressure was found to be the key factor to the chirality control in this study. Narrowly (n,m) distributed SWCNTs can only be obtained under high-pressure CO or vacuumed C2H5OH and CH3OH. The majority of these nanotubes are predominately in the same higher chiral-angle region. The carbon precursor chemistry may also play an important role to obtain narrowly (n,m) distributed SWCNTs. (n,m) selectivity on Co-Mo catalysts shifts under different carbon precursors providing the route for (n,m) specific SWCNTs production.  相似文献   

9.
Carbon nanotubes have been shown to be easily dispersed within an acidic aqueous solution of poly(acrylic acid) but precipitate when the pH is increased. Transmission electron microscopy showed that the nanotubes were more exfoliated under the acidic condition but highly aggregated under the basic condition. Carbon K‐edge NEXAFS spectroscopy showed that the carbon nanotubes did not chemically react with poly(acrylic acid) during the dispersion or precipitation and that the dispersion mainly involved physical adsorption of poly(acrylic acid) onto the nanotubes. Together with the carbon K‐edge NEXAFS spectra, the cobalt L3, 2‐edge NEXAFS spectra suggested that under the basic condition, the cobalt impurity within the nanotubes strongly reacted with poly(acrylic acid) resulting in complex formation. Cobalt reduces the adsorption of poly(acrylic acid) onto the nanotubes, which then reduced the nanotube dispersion and resulted in the precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Carbon nanotubes are composed of cylindrical graphite sheets. Both nanotubes and graphite sheets are benzenoid derivatives composed of sp2 carbon atoms arranged in a hexagonal pattern. Therefore both systems are aromatic. The extent of the aromatic character of a molecule G (here benzenoids) can be explained in terms of the number of possible Kekulé structures in G. In this work the Kekulé structures in carbon nanotubes and the corresponding, rectangular, graphite-sheets the tubes might originate from, were enumerated. It was shown that (2,2), (3,3), and (4,4) carbon nanotubes are more aromatic than the corresponding, rectangular, planar structures. This explains why it might be more difficult to saturate nanotubes by addition reactions than the respective, "narrow", graphite sheets.  相似文献   

11.
Benzene molecules confined in carbon nanotubes of varying radii are employed as semiconductors in electronic nanodevices, and their orientation determines the electrical properties of the system. In this paper, we investigate the interaction energy of all the possible configurations of a benzene molecule inside various carbon nanotubes and then we determine the equilibrium configuration. We adopt the continuous approach together with the semi-empirical Lennard-Jones potential function to model van der Waals interaction between a benzene molecule and a carbon nanotube. This approach results in an analytical expression, which accurately approximates the interaction energy and can be readily used to generate numerical data. We find that horizontal, tilted and perpendicular configurations on the axis of the carbon nanotube are all possible equilibrium configurations of the benzene molecule when the radius of the carbon nanotube is less than 5.580 Å. However, when the radius of the carbon nanotube is larger than 5.580 Å an offset horizontal orientation is the only possible equilibrium configuration of the benzene molecule. In the limiting case, the orientation of a benzene molecule on a graphene sheet can be derived simply by letting the radius of the carbon nanotube tend to infinity.  相似文献   

12.
It has been shown that the deposition of carbon nanotubes from CO could take place at very low temperatures by adding hydrogen to the gas mixture. Adding hydrogen significantly changes the nature of the chemical vapor deposition process. It has been demonstrated that at a certain ratio CO : H2 this gas mixture on the one hand could be used for the deposition of carbon structures at low temperatures and on the other hand for the etching of carbon structures at high temperatures. Thus, the same gas mixture can be both a source of carbon and its etchant depending on temperature. We have also demonstrated that carbon nanotubes of good quality without impurities of amorphous carbon, soot or graphite can be formed from the gas mixture of CO + H2 at low temperatures.  相似文献   

13.
The reaction of C2 with growing single-wall carbon nanotubes of different chiralities is investigated using density functional theory. It is found that the energy of the frontier orbitals for (5,5) and (6,6) armchair carbon nanotubes exhibits periodic behavior with an increasing number of carbon atoms in the nanotube. Such periodic behavior induces oscillations in the reaction energy released by adsorption of C2 to the nanotube open edge. In contrast, the energy of the frontier orbitals of the (6,5) chiral tube remains constant as the number of C atoms increases, and the same stability is observed in the adsorption energy. It is suggested that this may be one of the reasons for the low percent of armchair single-wall carbon nanotubes found in the experimental synthesis.  相似文献   

14.
Large-scale synthesis of perpendicularly aligned helical carbon nanotubes   总被引:4,自引:0,他引:4  
Large-scale perpendicularly aligned helical carbon nanotube arrays were prepared by co-pyrolysis of Fe(CO)5 and pyridine onto the pristine quartz glass plates in a tube furnace at 900-1100 degrees C under a mixture flow of Ar and H2. The resultant aligned helical carbon nanotubes could not only facilitate the structure-property characterization for helical carbon nanotubes but also allow them to be effectively incorporated into devices for practical applications.  相似文献   

15.
Zi Li  Chong-Yu Wang   《Chemical physics》2006,330(3):417-422
Carbon-containing gases usually present when preparing carbon nanotubes, and can affect the field emission of carbon nanotubes. Water vapor is also an important kind of gas for field emission, concerned by both experimental and theoretical studies. Under strong electric field, the gas molecules may be decomposed to radicals. Using DMol3 code based on density-functional theory, we calculated the adsorption of the gas molecules CH4, CO and H2O and the CH3 and OH radicals under emission conditions. We found that the H2O and the methyl have advantages to field emission and the CH4, CO and the hydroxyl have disadvantages. The results of H2O and CO are consistent with experiments, and the enhancement of current by CH4 in the experiment may be due to the methyl decomposed from the CH4.  相似文献   

16.
Fluorescence intensity from single walled carbon nanotubes in aqueous sodium dodecylsulfate solution is shown to be strongly temperature dependent in the range 5-60 degrees C. Emission peaks corresponding to particular nanotube species which have been quenched due to oxidation by aerated water show sharp transitions at distinct temperatures as the sample is heated. The temperature at which the transition occurs is found to be species dependent and has been interpreted as being proportional to the valence band edge potential of the nanotube. The results are explained quantitatively using the Nernst equation to measure the increase in reduction potential of the solution as the temperature is raised. The removal of dissolved O(2) and CO(2) is thought to be a significant driving force in the reversal of the redox reaction which causes oxidation of the nanotubes.  相似文献   

17.
A hydrogen storage mechanism in single-walled carbon nanotubes.   总被引:3,自引:0,他引:3  
We have carried out systematic calculations for hydrogen-adsorption and -storage mechanism in carbon nanotubes at zero temperature. Hydrogen atoms first adsorb on the tube wall in an arch-type and zigzag-type up to a coverage of theta = 1.0 and are stored in the capillary as a form of H(2) molecule at higher coverages. Hydrogen atoms can be stored dominantly through the tube wall by breaking the C--C midbond, while preserving the wall stability of a nanotube after complete hydrogen insertion, rather than by the capillarity effect through the ends of nanotubes. In the hydrogen-extraction processes, H(2) molecule in the capillary of nanotubes first dissociates and adsorbs onto the inner wall and is further extracted to the outer wall by the flip-out mechanism. Our calculations describe suitably an electrochemical storage process of hydrogen, which is applicable for the secondary hydrogen battery.  相似文献   

18.
Asymmetrically functionalized single-wall carbon nanotubes (SWNTs) have been prepared by a covalent reaction of an 11-mercaptoundecanol-modified Au surface with oxidized SWNT cylinders. While one end of the tubes is attached to gold substrate via ester groups, the free carboxylic substituents on the other end can be either ionized (CO2-) or esterified (CO2Et), creating a donor-acceptor asymmetric and acceptor-acceptor symmetric SWNT, respectively. Study of the SWNT monolayer conductance in Hg drop junction experiments reveals a pronounced diode-like behavior for donor-SWNT-acceptor junctions, while acceptor-SWNT-acceptor junctions are electrically symmetric.  相似文献   

19.
N-doped SWCNT with different concentration of doped nitrogen atoms were investigated through density functional theory (DFT) calculations for detecting CO molecule. The CO molecule was adsorbed to different sites of the modified nanotubes and their geometric structures and electronic properties were investigated after full optimization. A significant change can be observed in adsorption energies and electronic properties of N-doped SWCNT after CO adsorption. By increasing the number of nitrogen atoms in each unit cell, these properties change more obviously. So these modified nanotubes can be used as CO sensors.  相似文献   

20.
Thin films of Fe2O3 were obtained on silica glass substrates through the thermal decomposition of ferrocene in air. These films were characterized by Raman spectroscopy and X-ray diffractometry (XRD), and subsequently used as catalyst on the growth of carbon nanotubes, using benzene or a benzene solution of [Fe3(CO)12] as precursor. A great amount of a black powder was obtained as product, identified as multi-walled carbon nanotubes by XRD, Raman spectroscopy and transmission electron microscopy. The carbon nanotubes formed through the pyrolysis of the [Fe3(CO)12] solution were identified as structurally better than the one obtained by the pyrolysis of pristine benzene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号