首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Unsymmetrical gas flows around a carrying airfoil, with velocities close to sonic at infinity, are discussed. In a region situated a certain distance from the profile, an asymptotic solution of the flow problem is constructed. A detailed analysis is made of the dependence of the terms of the asymptotic sequences of the parameters characterizing the transverse and longitudinal dimensions of the body. The law of change in the lifting force as a function of the difference 1 – M, which is assumed to be small, is established. The connection between the theoretical results and experimental data is discussed in detail.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 104–112, January–February, 1978.  相似文献   

3.
Using the method of averaging, the system of forced impact oscillator has been investigated. Periodic solution of the system considered and first approximation of the averaged system are shown to exist and to be close.  相似文献   

4.
High Reynolds number viscous transonic flow is described based on an interaction of the potential outer flow with the boundary layer and wake. Following the procedure of Lighthill (1958), the solutions in these domains are matched to each other through boundary conditions. The solution to the complete problem is obtained iteratively through successive computations of the flows in the outer and inner domains. Both old and new algorithms are used for the iteration process and subsequent problem solution. Results are given for all the airfoils from the Experimental Data Base for Computer Program Assessment (AGARD-AR-138, 1979). A comparison of these results with experimental data shows the degree of agreement between these unbounded airfoil flow simulations and real transonic flow over the central part of a straight wing.  相似文献   

5.
6.
A characteristic of small blood and lymphatic vessels is the capacity of the wall to change its rheological properties and lumen by active contraction of the annular muscle cells contained in it [1–3]. A model of flow in the vessels taking this feature into account has been proposed in [4, 5], where a linear stability analysis is also given. A consequence of wall activity is the existence of auto-oscillatory flow conditions [6–8], which have also been discovered in the numerical solutions of the corresponding problems [9, 10]. Up to the present time flows have only been studied under steady conditions at the ends of the vessel and in the environment. The wall of an actual blood vessel is subject to various actions, frequently of a periodic nature: pressure pulsations at entry and rhythmically changing external forces applied from the surrounding tissues. Data exist on the sensitivity of vessels to transient actions [11–13], in particular on the relationship of their hydraulic resistance to frequency and amplitude of the action. There has been frequent discussion of the hypothesis that bv contraction of muscles in its walls or by external compression the vessel can act as a valveless pump [14, 15]. Within the framework of the quasione-dimensional approximation given below [4] the movement of liquid along a viscoelastic tube in the presence of small amplitude periodic external actions has been studied. A general solution of the problem has been constructed and concrete examples are given illustrating the features of forced wave motions in a tube having passive and active properties.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 4, pp. 94–99, July–August, 1984.  相似文献   

7.
A study is made in the quasione-dimensional inertialess approximation of the axisymmetric flow of a Newtonian fluid in a tube of finite length made of a nonlinear active material with the capability of reducing deformations in response to an increase in tensile stresses [1, 2]. A study is made of the influence of the frequency and amplitude of forced oscillations of pressure at the entrance of the tube on its flow rate characteristics and on the behavior of the tube, depending on its length and certain rheological parameters. The first attempts at a study within the framework of this model of flow for unsteady conditions at the ends of the tube and in the ambient medium are described in [3, 4]. A general solution of this problem for external periodic disturbances of low amplitude is constructed in [5]. The present study gives an analysis of certain results of the numerical solution of an analogous problem for a wide range of variations in the frequency and amplitude of the pressure oscillations at the entrance to the tube.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 88–90, March–April, 1985.  相似文献   

8.
9.
10.
Flow, Turbulence and Combustion - In order to explain the occurrence of flame-driven oscillations the transfer functions of laminar flames of premixed gases are discussed. An effort is made to...  相似文献   

11.
12.
Precise drag prediction of airfoil flows by a new algebraic model   总被引:3,自引:0,他引:3  
We report the results of accurate prediction of lift(C L)and drag(C D)coefficients of two typical airfoil flows(NACA0012 and RAE2822)by a new algebraic turbulence model,in which the eddy viscosity is specified by a stress length(SL)function predicted by structural ensemble dynamics(SED)theory.Unprecedented accuracy of the prediction of C D with error of a few counts(one count is 10−4)and of C L with error under 1%-2%are uniformly obtained for varying angles of attack(AoA),indicating an order of magnitude improvement of drag prediction accuracy compared to currently used models(typically around 20 to 30 counts).More interestingly,the SED-SL model is distinguished with fewer parameters of clear physical meaning,which quantify underlying turbulent boundary layer(TBL)with a universal multi-layer structure,and is thus promising to be more easily generalizable to complex TBL.The use of the new model for the calibration of flow condition in experiment and the extraction of flow physics from numerical simulation data of aeronautic flows are discussed.  相似文献   

13.
The preconditioning technique can address the stiffness of a low Mach number flow, while its stability is poor. Based on the conventional preconditioning method of Roe's scheme, a low-diffusion scheme is proposed. An adjustable parameter is introduced to control numerical dissipation, especially over the dissipation in the boundary layer and extremely in a low speed region. Numerical simulations of the low Mach number and low Reynolds number flows past a cylinder and the low Mach number and high Reynolds number flows past NACA0012 and S809 airfoils are performed to validate the new scheme. Results of the three tests well agree with experimental data, showing the applicability of the proposed scheme to low Mach number flow simulations.  相似文献   

14.
15.
A typical airfoil section system with freeplay is investigated in the paper. The classic quasi-steady flow model is applied to calculate the aerodynamics, and a piecewise-stiffness model is adopted to characterize the nonlinearity of the airfoil section’s freeplay. There are two critical speeds in the system, i.e., a lower critical speed, above which the system might generate limit cycle oscillation, and an upper critical one, above which the system will flutter. Then a Poincaré map is constructed for the limit cycle oscillations by using piecewise-linear solutions with and without contact in the system. Through analysis of the Poincaré map, a series of equations which can determine the frequencies of period-1 limit cycle oscillations at any flight velocity are derived. Finally, these analytic results are compared to the results of numerical simulations, and a good agreement is found. The effects of freeplay value and contact stiffness ratio on the limit cycle oscillation are also analyzed through numerical simulations of the original system. Moreover, there exist multi-periods limit cycle oscillations and even complicated "chaotic" oscillations may occur, which are usually found in smooth nonlinear dynamic systems.  相似文献   

16.
A class of exact solution of the gasdynamics equations with the linear dependence of the velocity components on the coordinates and a functional arbitrariness in the density (entropy) distribution is constructed. Using this class the characteristics of acoustic oscillations occurring, when a swirling gas flow deviates from the steady cyclostrophic equilibrium regime, that is, the equilibrium between the pressure gradient and the centrifugal force, are studied. An expression for the fundamental oscillation frequency agreeing with the measurements is derived.  相似文献   

17.
A study is made of two-dimensional transonic flows of gas around an airfoil in the working part of a wind tunnel with porous walls. The values of the flow parameters are determined by the numerical solution of a boundary-value problem for the equation of the velocity potential; this problem simulates the gas flow around the profile in the tunnel with porous walls. The obtained results are then used to construct an asymptotic theory of the influence of the wind-tunnel height and the Mach number M of the flow in it on the characteristics of the flow around the airfoil.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 99–107, September–October, 1980.  相似文献   

18.
19.
Nonlinear forced oscillations of a vertical continuous rotor with distributed mass are discussed. The restoring force of the rotor has geometric stiffening nonlinearity due to the extension of the rotor center line. The possibility of the occurrence of nonlinear forced oscillations at various subcritical speeds and the shapes of resonance curves at the major critical speeds and at some subcritical speeds are investigated theoretically. Consequently, the following is clarified: (a) the shape of resonance curves at the major critical speed becomes a hard spring type, and (b) among various kinds of nonlinear forced oscillations, only some special kinds of combination resonances have possibility of occurrence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号