首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.  相似文献   

2.
3.
《Physics letters. A》1998,245(6):518-526
We analyze a macroscopic 3D model for flows of liquid crystalline polymers (LCPs), deduced from Doi-type [3,4] kinetic equations. The Doi model accounts for rigid-rod microstructure, which introduces elastic relaxation and polymer-induced viscosity in addition to a Newtonian solvent viscosity, thus capturing all effects contained in standard isotropic viscoelastic models for Maxwell and Oldroyd B fluids. The rod-like microstructure further introduces anisotropic effects in the form of drag on the rods, together with a short-range, Maier-Saupe intermolecular potential, whose critical points vary with LCP concentration and yield stable isotropic (at low density) and nematic (at high density) equilibrium phases. From this single model, we compare various physical mechanisms for reducing the capillary instability of inviscid cylindrical jets: solvent viscosity as studied by Rayleigh and Chandrasekhar; isotropic viscoelasticity, both with and without Newtonian solvent viscosity; anisotropic polymer friction; and finally, the nematic, highly aligned prolate phase at high LCP density. Realistic parameter values for LCPs correspond to a regime in which the LCP capillary number (polymer bulk free energy relative to surface tension) is above an identified critical value; in such regimes, the unstable growth rates of the isotropic and nematic phases are lowered arbitrarily close to zero if the molecular drag is sufficiently anisotropic even in the absence of solvent viscosity. In low capillary number regimes, where surface tension dominates LCP bulk free energy, the LCP growth rates are sandwiched below the inviscid Rayleigh curve and above an explicit positive lower bound.  相似文献   

4.
In this paper, we discuss the equilibrium phases and collapse transitions of a lyotropic nematic gel immersed in an isotropic solvent. A nematic gel consists of a cross-linked polymer network with rod-like molecules embedded in it. Upon decreasing the quality of the solvent, we find that a lyotropic nematic gel undergoes a discontinuous volume change accompanied by an isotropic-nematic transition. We also present phase diagrams that these systems may exhibit. In particular, we show that coexistence of two isotropic phases, of two nematic phases, or of an isotropic and a nematic phase can occur. Received 15 February 2002 and Received in final form 14 June 2002  相似文献   

5.
Smectic-C elastomers can be prepared by cross-linking, e.g., liquid crystal polymers, in the smectic-A phase followed by a cooling through the smectic-A to smectic-C phase transition. This transition from D(infinityh) to C(2h) symmetry spontaneously breaks rotational symmetry in the smectic plane as does the transition from a smectic-A to a biaxial smectic phase with D(2h) symmetry. We study these transitions and the emergent elasticity of the smectic-C and biaxial phases in three related models and show that these phases exhibit soft elasticity analogous to that of nematic elastomers.  相似文献   

6.
We present a unifying picture of the compact, dense, and dilute phases of two-dimensional polymers. The lattice dependence of the scaling exponents for compact polymers is reconciled with their universality in the dense and dilute cases. In particular, we show that violations of the fully packing constraint in the compact phase can be interpreted as magnetic screening in the associated Coulomb gas, which induces a flow to either the dense or the dilute phase. When more than one flavor of polymers is present the flow away from the compact phase leads to a decoupling of the flavors, and the central charge decreases by an integer. If charge asymmetry develops, the polymer flavors may independently flow to either of the two noncompact phases.  相似文献   

7.
We present a molecular dynamics study of reentrant nematic phases using the Gay-Berne-Kihara model of a liquid crystal in nanoconfinement. At densities above those characteristic of smectic A phases, reentrant nematic phases form that are characterized by a large value of the nematic order parameter S?1. Along the nematic director these "supernematic" phases exhibit a remarkably high self-diffusivity, which exceeds that for ordinary, lower-density nematic phases by an order of magnitude. Enhancement of self-diffusivity is attributed to a decrease of rotational configurational entropy in confinement. Recent developments in the pulsed field gradient NMR technique are shown to provide favorable conditions for an experimental confirmation of our simulations.  相似文献   

8.
We report the results of our studies on optical and thermal properties of two non-mesogenic compounds, namely, didodecyl dimethyl ammonium bromide (DDAB) and glacial acetic acid. The mixture exhibits schlieren texture of lyotropic micellar nematic (ND), SmA, SmB, and SmG phases, respectively, at different concentrations of DDAB sequentially when the specimen is cooled from isotropic phase. The order parameter (S) of lyotropic micellar nematic (ND) phase is estimated with the help of temperature dependence of optical anisotropy from the measured values of refractive index and density data. The temperature variation of order parameter of the experimental curve is in agreement with the Mayer–Saupe theoretical curve. The formation of the above phases has been confirmed by optical studies.  相似文献   

9.
This work reexamines and updates earlier investigations on the phase behaviour of the Gay-Berne liquid crystal model, concentrating on the effect of varying temperature. Constant volume and constant pressure Monte Carlo simulations are combined for systems consisting of N = 500 molecules along different isotherms over the reduced temperature range 0.60 ≤ T ≤ 1.25. As in previous simulation studies of the model, the study identifies nematic and smectic B phases on compressing the isotropic fluid, the particular phase sequence depending on temperature. The nematic phase is found to be stable with respect to the isotropic phase for reduced temperatures T ≥ 0.75. In the temperature range 0.75 ≤ T ≤ 1.25, the phase boundaries of the isotropic-nematic transition are obtained by computing the Helmholtz free energy of both phases from thermodynamic integration. From the simulation data, the relative volume change at the isotropic-nematic transition is about 2%, and this value appears to be rather insensitive to changes in temperature. On compressing the nematic phase, the Gay-Berne fluid undergoes a strong first-order transition to the smectic B phase. This transition is studied by using constant pressure simulation, and the coexistence properties are estimated from the limits of mechanical stability of the nematic phase. Larger relative volume changes are found at the transition than those suggested by previous studies, with typical values increasing up to 10.5% as the temperature is decreased. The results are consistent with the existence of strong coupling between nematic and smectic order parameters. For temperatures T ≤ 0.70 the nematic phase is no longer stable, and the phase sequence isotropic-smectic B is observed. Therefore, the Gay-Berne model exhibits an isotropic-nematic-smectic B triple point. Extrapolating the present simulation data, this triple point is located approximately at reduced temperature TINB ? 0.70 and reduced pressure PINB ? 1.825.  相似文献   

10.
We directly visualize single polymers with persistence lengths l(p), ranging from 0.05 to 16 microm, dissolved in the nematic phase of rodlike fd virus. Polymers with a sufficiently large persistence length undergo a coil-rod transition at the isotropic-nematic transition of the background solvent. We quantitatively analyze the transverse fluctuations of the semiflexible polymers and show that at long wavelengths they are driven by the fluctuating nematic background. We extract the Odijk deflection length and the elastic constant of the background nematic phase from the data.  相似文献   

11.
We model a melt of monodisperse side-chain liquid-crystalline polymers as a melt of comb copolymers in which the side groups are rod-coil diblock copolymers. We consider both excluded-volume and Maier-Saupe interactions. The first acts among any pair of segments while the latter acts only between rods. Using a free-energy functional calculated from this microscopic model, we study the spinodal stability of the isotropic phase against density and orientational fluctuations. The phase diagram obtained in this way predicts nematic and smectic instabilities as well as the existence of microphases or phases with modulated wave vector but without nematic ordering. Such microphases are the result of the competition between the incompatibility among the blocks and the connectivity constraints imposed by the spacer and the backbone. Also the effects of the polymerization degree and structural conformation of the monomeric units on the phase behavior of the side-chain liquid-crystalline polymers are studied.  相似文献   

12.
In this work, our investigation is to study the optical and thermal properties of the binary mixture of cholesteric and nematic compounds, namely, cholesteryl nonanoate and p-methoxybenzylidene-p-ethylaniline, which exhibits a very interesting liquid crystalline twisted grain boundary (TGB) phase and reentrant smectic-A phase. The chiral liquid crystalline TGB phases and reentrant smectic-A phases have been observed at different concentrations and at different temperatures. The existence of TGB and reentrant smectic-A phases is confirmed by differential scanning calorimetry and optical microscopic studies. The variation of optical anisotropy has been discussed. The helical pitch of the cholesteric phase has also been discussed.  相似文献   

13.
Liquid-crystal phase equilibria of Lennard-Jones chain fluids and the solubility of a Lennard-Jones gas in the coexisting phases are calculated from Monte Carlo simulations. Direct phase equilibria calculations are performed using an expanded formulation of the Gibbs ensemble. Monomer densities, order parameters, and equilibrium pressures are reported for the coexisting isotropic and nematic phases of: (1) linear Lennard-Jones chains, (2) a partially-flexible Lennard-Jones chain, and (3) a binary mixture of linear Lennard-Jones chains. The effect of chain length is determined by calculating the isotropic-nematic coexistence of linear Lennard-Jones chain fluids made of 8, 10, and 12 segments (8-, 10-, 12-mer). The effect of molecular flexibility on the isotropic-nematic equilibrium is studied for a Lennard-Jones 10-mer chain fluid with one freely-jointed segment at the end of the chain. An isotropic-nematic phase split and fractionation are reported for a binary mixture of linear 7-mer and 12-mer chains. Simulation results are compared with theoretical results as obtained from a recently developed analytical equation of state based on perturbation theory. Excellent agreement between theory and simulations is observed. The solubility of a monomer Lennard-Jones gas in the coexisting isotropic and nematic phases is estimated using the Widom test-particle insertion method. A linear relationship between solubility difference and density difference at isotropic-nematic coexistence is observed. It is shown that gas solubility is independent of the nematic ordering of the fluid, at constant temperature and density conditions.  相似文献   

14.
We report the results of our studies on the optical and thermal properties of the mixture of two non-mesogenic compounds, namely, sodium dodecyl sulfate (SDS) and glacial acetic acid (GAA). The mixture exhibits very interesting schlieren texture of lyotropic micellar nematic (ND) phase, SmA and SmB phases, respectively, at different concentrations of SDS in GAA sequentially when the specimen is cooled from its isotropic phase. The order parameter (S) of the lyotropic micellar nematic (ND) phase is estimated with the help of temperature dependence of optical anisotropy from the measured values of refractive index and density data. The experimental curve showing the temperature variation of order parameter is very well fitted with the Mayer–Saupe theoretical curve. X-ray studies have also been discussed. The formation of the above phases has been confirmed by optical and differential scanning calorimetry studies.  相似文献   

15.
Spontaneous thermal expansion of nematic elastomers   总被引:1,自引:0,他引:1  
We study the monodomain (single-crystal) nematic elastomer materials, all side-chain siloxane polymers with the same mesogenic groups and crosslinking density, but differing in the type of crosslinking. Increasing the proportion of long di-functional segments of main-chain nematic polymer, acting as network crosslinking, results in dramatic changes in the uniaxial equilibrium thermal expansion on cooling from the isotropic phase. At higher concentration of main chains their behaviour dominates the elastomer properties. At low concentration of main-chain material, we detect two distinct transitions at different temperatures, one attributed to the main-chain, the other to the side-chain component. The effective uniaxial anisotropy of nematic rubber, r(T) = / proportional to the effective nematic order parameter Q(T), is given by an average of the two components and thus reflects the two-transition nature of thermal expansion. The experimental data is compared with the theoretical model of ideal nematic elastomers; applications in high-amplitude thermal actuators are discussed in the end. Received 25 June 2001 and Received in final form 29 September 2001  相似文献   

16.
Solid state NMR techniques have been developed to investigate dynamic molecular effects (e.g., molecular reorientations) due to simultaneously applied external electric fields on electrically sensitive materials such as liquid crystals (LC), liquid crystalline polymers (LCP) and polymeric electrets. Such effects can be observed only on relatively thin systems (10-200 μm). That means that many scans are necessary to achieve a sufficiently high signal-to-noise-ratio in the spectra (500-1000 scans). If the material is also magnetically sensitive, the electric field can be used to orient molecules in a starting orientational state and by switching-off the voltage to access fast reorientation processes in the magnetic field B0. Until now, the behaviour of orientable molecular systems under the influence of electric fields has been investigated by means of a more or less quasistatic approach (LCP: 100 V, electrets: 1 kV) in equilibrium states. The achievable time resolution depends on the desired signal-to-noise-ratio. For the case of proton NMR this means a time resolution of about 10 min. However, very often switching processes occur on a much shorter time scale. Using conventional techniques it is impossible to observe fast (ca. 100 μs) electrically or magnetically induced reorientation processes. In this work, we present a concept to overcome the problems outlined above and to extend the area of our current in situ NMR investigations on thin electrically-switched or poled polymeric layers. The basic idea is to include synchronized electric pulses during the NMR experiment using the preparation and/or mixing periods of a 1D or 2D pulse sequence for the application of an orienting field (electric or magnetic) and to use the reversibility of the molecular switching phenomenon to achieve a sufficient signal-to-noise-ratio. The techniques extend the range of possible investigations from about 100 μs to approximately T1 for correlated spectra (and to longer times of applied fields for uncorrelated spectra). Results are shown for a nematic LC and a nematic polymer having a similar side chain.  相似文献   

17.
Composite flows     
Composite flow models are an extension of the equations for a single compressible gas flows with multiple components, multiple phases, or multiple layers. Examples of such flows include the transport of oil, water, and polymers in porous reservoirs; separation of adsorbable solutes by chromatography; distillation columns; thermoclines in the ocean; multiphase flows in reactors; and separation of DNA fragments by electrophoresis. In many examples local equilibrium assumptions, such as Darcy's law or the Langmuir isotherm assumption, lead to nonlinear hyperbolic conservation laws which can be analyzed in terms of Riemann problems and elementary waves. In these cases front tracking algorithms show great promise for resolving very complicated wave interactions, in one dimension. We survey some of the recent developments in this field and present some computational examples. When local equilibrium assumptions are inappropriate, as is the case in many multiphase and multilayer flows, considerable difficulties, both theoretical and numerical, arise from the fact that the equations may be neither hyperbolic nor in conservation form. We give some examples of this and discuss the possibilities for analyzing these flows in terms of elementary and solitary waves.  相似文献   

18.
Micro/nano-porous polymeric material is considered a unique industrial material due to its extremely low thermal conductivity, low density, and high surface area. Therefore, it is necessary to establish an accurate thermal conductivity prediction model suiting their applicable conditions and provide a theoretical basis for expanding their applications. In this work, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models of thermal conductivity are introduced separately according to the conductive and radiative thermal conductivity models. In addition, the thermal conduction part is divided into the gaseous thermal conductivity model, solid thermal conductivity model and gas–solid coupling model. Finally, it is concluded that, compared with other porous materials, there are few studies on heat transfer of micro/ nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effects at the micro/nanoscale. In particular, the following aspects of porous polymers still need to be further studied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at the nanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studies would provide a more accurate prediction of thermal conductivity and a broader application in energy conversion and storage systems.  相似文献   

19.
We review the past decade’s theoretical and experimental studies of flocking: the collective, coherent motion of large numbers of self-propelled “particles” (usually, but not always, living organisms). Like equilibrium condensed matter systems, flocks exhibit distinct “phases” which can be classified by their symmetries. Indeed, the phases that have been theoretically studied to date each have exactly the same symmetry as some equilibrium phase (e.g., ferromagnets, liquid crystals). This analogy with equilibrium phases of matter continues in that all flocks in the same phase, regardless of their constituents, have the same “hydrodynamic”—that is, long-length scale and long-time behavior, just as, e.g., all equilibrium fluids are described by the Navier-Stokes equations. Flocks are nonetheless very different from equilibrium systems, due to the intrinsically nonequilibrium self-propulsion of the constituent “organisms.” This difference between flocks and equilibrium systems is most dramatically manifested in the ability of the simplest phase of a flock, in which all the organisms are, on average moving in the same direction (we call this a “ferromagnetic” flock; we also use the terms “vector-ordered” and “polar-ordered” for this situation) to exist even in two dimensions (i.e., creatures moving on a plane), in defiance of the well-known Mermin-Wagner theorem of equilibrium statistical mechanics, which states that a continuous symmetry (in this case, rotation invariance, or the ability of the flock to fly in any direction) can not be spontaneously broken in a two-dimensional system with only short-ranged interactions. The “nematic” phase of flocks, in which all the creatures move preferentially, or are simply oriented preferentially, along the same axis, but with equal probability of moving in either direction, also differs dramatically from its equilibrium counterpart (in this case, nematic liquid crystals). Specifically, it shows enormous number fluctuations, which actually grow with the number of organisms faster than the “law of large numbers” obeyed by virtually all other known systems. As for equilibrium systems, the hydrodynamic behavior of any phase of flocks is radically modified by additional conservation laws. One such law is conservation of momentum of the background fluid through which many flocks move, which gives rise to the “hydrodynamic backflow” induced by the motion of a large flock through a fluid. We review the theoretical work on the effect of such background hydrodynamics on three phases of flocks—the ferromagnetic and nematic phases described above, and the disordered phase in which there is no order in the motion of the organisms. The most surprising prediction in this case is that “ferromagnetic” motion is always unstable for low Reynolds-number suspensions. Experiments appear to have seen this instability, but a quantitative comparison is awaited. We conclude by suggesting further theoretical and experimental work to be done.  相似文献   

20.
We report that the properties of the isotropic to nematic liquid crystalline phase transition of F-actin depend critically on the average filament length. For average filament lengths longer than 2 microm, we confirm previous findings that the phase transition is continuous in both alignment and concentration. For average filament lengths shorter than 2 microm, we show for the first time a first order transition with a clear discontinuity in both alignment and concentration. Tactoidal droplets of coexisting isotropic and nematic phases, differing in concentration by approximately 30%, form over the course of hours and appear to settle into near equilibrium metastable states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号