首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this work we study diffusion interactions among liquid droplets growing in stochastic population by condensation from supersaturated binary gas mixture. During the postnucleation transient regime collective growth of liquid droplets competing for the available water vapor decreases local supersaturation leading to the increase of critical radius and the onset of coarsening process. In coarsening regime the growth of larger droplets is prevailing noticeably broadening the droplet size-distribution function when the condensation process becomes more intensive than the supersaturation yield. Modifications in the kinetic equation are discussed and formulated for a stochastic population of liquid droplets when diffusional interactions among droplets become noteworthy. The kinetic equation for the droplet size-distribution function is solved together with field equations for the mass fraction of disperse liquid phase, mass fraction of water vapor component of moist air, and temperature during diffusion-dominated regime of droplet coarsening. The droplet size and mass distributions are found as functions of the liquid volume fraction, showing considerable broadening of droplet spectra. It is demonstrated that the effect of latent heat of condensation considerably changes coarsening process. The coarsening rate constant, the droplet density (number of droplets per unit volume), the screening length, the mean droplet size, and mass are determined as functions of the temperature, pressure, and liquid volume fraction.  相似文献   

3.
4.
A set of equations has been derived for the size, composition, and temperature of a multicomponent droplet of a nonideal solution during its diffusion nonisothermal condensation growth or evaporation in a multicomponent mixture of vapors with an incondensable carrier gas. In addition to complete equations for material and heat transfer in the vapor-gas medium surrounding the droplet, the derived set, in the general case, describes the nonstationary growth or evaporation of the droplet under arbitrary initial conditions (initial size and temperature of the droplet and the concentrations of the nonideal multicomponent solution in it) and the establishment of the stationary values of the composition, temperature, and the rate of variations in the size of the droplet with allowance for heat effects and diffusion and thermodiffusion material transfer, Stefan flux, motion of the droplet surface, and the nonideality of the solution in the droplet. A simplified set of equations obtained without taking into account the contributions from the flow, cross effects, and thermal expansion in the equations of the material and heat transfer in the vapor-gas medium has been considered. Equations describing growth/evaporation in the stationary regime have been analyzed for droplets of ideal multicomponent solutions.  相似文献   

5.
A set of equations has been derived for the nonstationary composition, size, and temperature of a growing or evaporating multicomponent microdroplet of a nonideal solution under arbitrary initial conditions. Equations for local nonstationary diffusion molecular and heat fluxes in a mixture of a multicomponent vapor with a noncondensable carrier gas have been obtained within the framework of nonequilibrium thermodynamics with allowance for hydrodynamic flow of the medium. The derived closed set of equations takes into account the nonstationarity of the diffusion and heat transfer, effect of thermodiffusion and other cross effects in the multicomponent vapor–gas medium, the Stefan flow, and droplet boundary motion, as well as the nonideality of the solution in the droplet. The general approach has been illustrated by the consideration of the multicomponent medium at low concentrations of vapors taking into account its thermal expansion due to the Stefan flow in the case of a nonstationary diffusion regime of the nonisothermal condensation growth of a one-component droplet.  相似文献   

6.
Results of numerical solution have been presented for a set of equations describing the nonstationary and nonisothermal growth or evaporation of microdroplets consisting of ethanol and water, sulfuric acid and water, and sulfuric and nitric acids and water. Time dependences of droplet size, temperature, and composition have been determined at low concentrations of a condensable vapor, as compared with the concentration of a carrier gas in an ambient vapor–gas mixture. The calculations have been performed using different initial conditions and approximations for the dependences of saturation vapor pressures, activity coefficients, and partial heats of condensation of the components, as well as average volumes per molecule on droplet composition and temperature. By the examples of ethanol–water and sulfuric acid–water droplets, it has been shown that nonmonotonic variations in the droplet radius are possible. Regimes of nonmonotonic variations in the temperature of a droplet that precede the onset of its stationary growth or evaporation have been revealed for all systems under consideration.  相似文献   

7.
Statistical approach to the study of the process of homogeneous nucleation of droplets in the vapor–gas medium in the presence of originally generated growing droplet at free molecular regime of droplet growth after the instantaneous creation of initial vapor supersaturation is proposed. The probability density of the creation of a new droplet in the vicinity of originally generated droplet is found. The mean distance between two neighboring droplets and the relative scatter of this distance are determined. The mean expectation time for the appearance of neighboring droplet estimating the duration of the droplet nucleation stage is found. The average number of droplets in a unit volume of the vapor–gas medium by the end of the droplet nucleation stage is estimated. The results obtained are compared with the predictions of the theory based on the assumption of the homogeneity of metastable phase.  相似文献   

8.
A problem concerning the free evaporation or condensation growth of a droplet near an infinite planar surface of the same liquid is solved. The behavior of the droplet is considered at vapor temperature and concentration gradients preset at an infinite distance from it. The boundary conditions take into account effects that are linear with respect to the Knudsen number. Equations are derived for the rate of variations in the radius of the droplet and the velocity of its steady motion induced by nonuniform temperature and concentration of the vapor. Dependences of the rate of variations in the radius and the velocity of the steady motion of the droplet on the distance from the planar surface are presented for a droplet 1 ??m in radius suspended in air.  相似文献   

9.
The evolving size, composition, and temperature of evaporating ethanol/water aerosol droplets 25-57 microm in radius are probed by cavity enhanced Raman scattering (CERS) and laser induced fluorescence. This represents the first study in which the evolving composition of volatile droplets has been probed with spatial selectivity on the millisecond time scale, providing a new strategy for exploring mass and heat transfer in aerosols. The Raman scattering intensity is shown to depend exponentially on species concentration due to the stimulated nature of the CERS technique, providing a sensitive measure of the concentration of the volatile ethanol component. The accuracy with which we can determine droplet size, composition, and temperature is discussed. We demonstrate that the CERS measurements of evolving size and composition of droplets falling in a train can be used to characterize, and thus avoid, droplet coagulation. By varying the surrounding gas pressure (7-77 kPa), we investigate the dependence of the rate of evaporation on the rate of gas diffusion, and behavior consistent with gas diffusion-limited evaporation is observed. We suggest that such measurements can allow the determination of the vapor pressures of components within the droplet and can allow the determination of activity coefficients of volatile species.  相似文献   

10.
Rigorous self-similar solutions to the joint problems of vapor diffusion toward a droplet growing in a vapor-gas medium and the removal of heat released during vapor condensation are found. An equation for the temperature of a droplet ensuring the existence of a self-similar solution is derived. This equation sets the constancy of the temperature of a droplet throughout the time of its growth and unambiguously determines this temperature. In the case of the strong heat effects, when the rate of droplet growth decreases substantially, the analytical solution to this equation is obtained. This temperature coincides precisely with the temperature, which is established in the droplet at the diffusion regime of its growth. At the found droplet temperature, interconnected fields of vapor concentration and temperature of vapor-gas medium around the droplet are expressed through the initial (prior to the droplet nucleation) parameters of a vapor-gas medium. These parameters are used to express the dependence of the radius of a droplet on the time at the diffusion regime of its growth and the time required to establish the diffusion regime of droplet growth. The case of weak heat effects is also studied.  相似文献   

11.
We study the effects of Marangoni stresses on the flow in an evaporating sessile droplet, by extending a lubrication analysis and a finite element solution of the flow field in a drying droplet, developed earlier. The temperature distribution within the droplet is obtained from a solution of Laplace's equation, where quasi-steadiness and neglect of convection terms in the heat equation can be justified for small, slowly evaporating droplets. The evaporation flux and temperature profiles along the droplet surface are approximated by simple analytical forms and used as boundary conditions to obtain an axisymmetric analytical flow field from the lubrication theory for relatively flat droplets. A finite element algorithm is also developed to solve simultaneously the vapor concentration, and the thermal and flow fields in the droplet, which shows that the lubrication solution with the Marangoni stress is accurate for contact angles as high as 40 degrees. From our analysis, we find that surfactant contamination, at a surface concentration as small as 300 molecules/microm(2), can almost entirely suppress the Marangoni flow in the evaporating droplet.  相似文献   

12.
The problem of the free evaporation of a droplet of moderately large size occurring near an infinite flat wall is solved. The cases in which the wall surface is impenetrable to an evaporating substance and vapor concentration remains unchanged at the surface are considered. The temperature of the wall surface is assumed to be constant and equal to the gas temperature at a large distance from the droplet. A set of algebraic equations is derived for molecular fluxes and the temperature and the concentration of gaseous components. Dependences of the evaporation rate of a water droplet suspended in air on its radius and distance from a wall are determined.  相似文献   

13.
The problem of vapor diffusion toward a droplet nucleated and growing in the diffusion regime is exactly solved using the similarity theory. The surface motion of droplets is taken into account in the solution. The constructed nonstationary concentration field of vapor satisfies the diffusion equation, the boundary condition of equilibrium on the surface of growing droplet, and the initial homogeneous condition. According to the found solution, the radius of a droplet is proportional to the square root of the time of its growth. Far from the critical point, at a low ratio between the densities of excess vapor and a liquid droplet, the proportionality coefficient coincides with that resulting from an approximate solution. The balance between the numbers of molecules removed from vapor and those composing a growing droplet exactly corresponds to the obtained solution.  相似文献   

14.
The volume condensation of supersaturated vapor is investigated by the direct numerical solution of the basic kinetic equation for the droplet size distribution function by analogy with the corresponding solution of the Boltzmann kinetic equation. The proposed consideration of the condensation growth of droplets is applicable at any Knudsen number. The method is tested by the example of vapor condensation under the conditions of the rapid development of supersaturation in a vapor-gas mixture as a result of its adiabatic expansion. In a wide range of Knudsen numbers, the results of the modeling are compared with those obtained by the moment method.  相似文献   

15.
A set of equations is derived to calculate the stationary temperature and concentration of a solution in a overcritical droplet with regard to the heat release accompanying the condensation of a binary mixture of vapors in a diffusion or free-molecular regime. In the approximation of an ideal solution, relations are found for the stationary temperature of droplet growing under the conditions of strong and weak thermal effects. For the general case and the cases of strong and weak thermal effects, the temperature and concentration of the droplet and the coefficient of the thermal deceleration of the droplet growth are calculated as functions of the density of a passive gas. The influence of the condensation heat values of the first and second components of the mixture on the stationary temperature and concentration of the solution in the growing droplet is investigated separately.  相似文献   

16.
The heterogeneous condensation of water vapor on nanoparticles and the growth of formed droplets are numerically studied under conditions of laminar diffusion chamber (LDC) of a new type with a hot porous wall. The main attention is focused on the growth of heterogeneous droplets in the gas flow at high number densities of nanoparticles exceeding 108 droplet/m3. Under these conditions, there is an interrelation between the growth of droplets and processes of heat and mass transfer in LDC due to vapor depletion and the release of latent heat of phase transition on growing droplets. The efficiency of the coverage of nanoparticles with water film is studied under LDC nonuniform conditions. It is shown that, at initial number densities of nanoparticles (N d > 1011 droplet/m3), heterogeneous droplets do not grow to optically detected sizes.  相似文献   

17.
The non-steady-state temperature field of the vapor-gas medium in the vicinity of a droplet growing in supersaturated vapor is constructed. In the conduction problem, a time-dependent boundary condition is used which ensures the fulfillment of the balance condition of the heat of phase transition. The resultant temperature field is compared with the one obtained in the heat conduction problem with the equilibrium boundary condition on the surface of a droplet of a fixed radius. Although the solution with the equilibrium boundary condition does not ensure the balance between the heat released on the growing droplet and the heat distributed due to heat conduction in the vapor-gas medium, the difference between the two solutions is not very large. This difference is important for describing the homogeneous nucleation of supersaturated vapor in the vicinity of a growing droplet, as is indicated by comparison of the vapor supersaturation fields constructed with and without allowance for thermal effects, as well as with the use of solutions to the diffusion and heat conduction problems with various boundary conditions.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 333–341.Original Russian Text Copyright © 2005 by Grinin, Zhuvikina, Gor.  相似文献   

18.
Phase change accompanying conversion of a saturated or superheated vapor in the presence of subcooled surfaces is one of the most common occurring phenomena in nature. The mode of phase change that follows such a transformation is dependent upon surface properties such as contact angle and thermodynamic conditions of the system. In present studies, an experimental approach is used to study the physics behind droplet growth on a partially wet surface. Superheated vapor at low pressures of 4-5 Torr was condensed on subcooled silicon surface with a static contact angle of 60° in the absence of noncondensable gases, and the condensation process was monitored using environmental scanning electron microscopy (ESEM) with sub-microscopic spatial resolution. The condensation process was analyzed in the form of size growth of isolated droplets before a coalescence event ended the regime of single droplet growth. Droplet growth obtained as a function of time reveals that the rate of growth decreases as the droplet increases in size. This behavior is indicative of an overall droplet growth law existing over larger time scales for which the current observations in their brief time intervals could be fitted. A theoretical model based on kinetic theory further support the experimental observations indicating a mechanism where growth occurs by interfacial mass transport directly on condensing droplet surface. Evidence was also found that establishes the presence of sub-microscopic droplets nucleating and growing between microscopic droplets for the partially wetting case.  相似文献   

19.
Times of metastable droplet relaxation to their equilibrium state are calculated at saturated vapor pressures, depending on the droplet size. It is shown that for small droplets with radius R = 6 molecular diameters (or ~2 nm) the relaxation times are ~1 ns (which is comparable to the characteristic flight times of rarefied gas molecules). For large droplets with radius R ~ 800 molecular diameters, the relaxation times are as long as 10 μs. At a fixed droplet radius (6 ≤ R ≤ 800), the range of variation in relaxation time from the melting point to the critical temperature does not exceed one order of magnitude: the lower the temperature, the slower the relaxation process.  相似文献   

20.
We propose a statistico-probabilistic approach to investigate the process of homogeneous formation of droplets in a vapor phase in the presence of an already formed and growing droplet under free-molecular regime of droplet growth after the instantaneous creation of initial vapor supersaturation. We find the probability density for the formation of a new, nearest (neighbor) droplet in the vicinity of an initially formed droplet. The mean distance between two neighboring droplets is also determined, as well as the average time lag for the formation of the nearest (neighbor) droplet; the latter quantity serves as an estimate for the duration of the nucleation stage. An estimate for the average number of droplets forming in unit volume by the end of the nucleation stage is also given. Our results are compared with the predictions of classical nucleation theory which assumes the density uniformity of a metastable phase. Where the proposed approach is applicable, there is observed qualitative agreement between the results. The underlying cause of this agreement is analyzed and the limits of applicability of the uniformity approximation are clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号