首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-complete graph G is called an (n,k)-graph if it is n-connected but GX is not (n−|X|+1)-connected for any X V (G) with |X|≤k. Mader conjectured that for k≥3 the graph K2k+2−(1−factor) is the unique (2k,k)-graph(up to isomorphism). Here we prove this conjecture.  相似文献   

2.
G =(V,E) is a 2-connected graph, and X is a set of vertices of G such that for every pair x,x' in X, , and the minimum degree of the induced graph <X> is at least 3, then X is covered by one cycle. This result will be in fact generalised by considering tuples instead of pairs of vertices. Let be the minimum degree in the induced graph <X>. For any , . If , and , then X is covered by at most (p-1) cycles of G. If furthermore , (p-1) cycles are sufficient. So we deduce the following: Let p and t () be two integers. Let G be a 2-connected graph of order n, of minimum degree at least t. If , and , then V is covered by at most cycles, where k is the connectivity of G. If furthermore , (p-1) cycles are sufficient. In particular, if and , then G is hamiltonian. Received April 3, 1998  相似文献   

3.
LexX be anm-connected infinite graph without subgraphs homeomorphic toKm, n, for somen, and let α be an automorphism ofX with at least one cycle of infinite length. We characterize the structure of α and use this characterization to extend a known result about orientation-preserving automorphisms of finite plane graphs to infinite plane graphs. In the last section we investigate the action of α on the ends ofX and show that α fixes at most two ends (Theorem 3.2).  相似文献   

4.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. We have recently shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. A greedy max-clique decomposition is a particular kind cf greedy clique decomposition where maximum cliques are removed, instead of just maximal ones. In this paper, we show that any greedy max-clique decompositionC of a graph of ordern has, wheren(C) is the number of vertices inC.  相似文献   

5.
A random geometric graph G n is constructed by taking vertices X 1,…,X n ∈ℝ d at random (i.i.d. according to some probability distribution ν with a bounded density function) and including an edge between X i and X j if ‖X i -X j ‖ < r where r = r(n) > 0. We prove a conjecture of Penrose ([14]) stating that when r=r(n) is chosen such that nr d = o(lnn) then the probability distribution of the clique number ω(G n ) becomes concentrated on two consecutive integers and we show that the same holds for a number of other graph parameters including the chromatic number χ(G n ). The author was partially supported by EPSRC, the Department of Statistics, Bekkerla-Bastide fonds, Dr. Hendrik Muller’s Vaderlandsch fonds, and Prins Bernhard Cultuurfonds.  相似文献   

6.
d -regular graph G, let M be chosen uniformly at random from the set of all matchings of G, and for let be the probability that M does not cover x. We show that for large d, the 's and the mean μ and variance of are determined to within small tolerances just by d and (in the case of μ and ) : Theorem. For any d-regular graph G, (a) , so that , (b) , where the rates of convergence depend only on d. Received: April 12, 1996  相似文献   

7.
It is known that there exists a cycle through any nine vertices of a 3-connected cubic graphG. Here we show that if an edge is removed from such a graph, then there is still a cycle through any five vertices. Furthermore, we characterise the circumstances in which there fails to be a cycle through six. As corollaries we are able to prove that a 3-connected cubic graph has a cycle through any specified five vertices and one edge, and to classify the conditions under which it has a cycle through four chosen vertices and two edges. We are able to use the five and six vertex results to show that a 3-connected cubic graph has a cycle which passes through any ten given vertices if and only if the graph is not contractible to the Petersen graph in such a way that the ten vertices each map to a distinct vertex of the Petersen graph.  相似文献   

8.
We consider the problem of finding a large or dense triangle-free subgraph in a given graph G. In response to a question of P. Erdős, we prove that, if the minimum degree of G is at least 9|V (G)|/10, the largest triangle-free subgraphs are precisely the largest bipartite subgraphs in G. We investigate in particular the case where G is a complete multipartite graph. We prove that a finite tripartite graph with all edge densities greater than the golden ratio has a triangle and that this bound is best possible. Also we show that an infinite-partite graph with finite parts has a triangle, provided that the edge density between any two parts is greater than 1/2.  相似文献   

9.
Contractible edges in triangle-free graphs   总被引:2,自引:0,他引:2  
An edge of a graph is calledk-contractible if the contraction of the edge results in ak-connected graph. Thomassen [5] proved that everyk-connected graph of girth at least four has ak-contractible edge. In this paper, we study the distribution ofk-contractible edges in triangle-free graphs and show the following: Whenk≧2, everyk-connected graph of girth at least four and ordern≧3k, hasn+(3/2)k 2-3k or morek-contractible edges.  相似文献   

10.
Ervin Győri 《Combinatorica》1991,11(3):231-243
In this paper, we prove that any graph ofn vertices andt r–1(n)+m edges, wheret r–1(n) is the Turán number, contains (1–o(1)m edge disjointK r'sifm=o(n 2). Furthermore, we determine the maximumm such that every graph ofn vertices andt r–1(n)+m edges containsm edge disjointK r's ifn is sufficiently large.Research partially supported by Hungarian National Foundation for Scientific Research Grant no. 1812.  相似文献   

11.
We show that if a graph G has the property that all subsets of vertices of size n/4 contain the “correct” number of triangles one would expect to find in a random graph G(n, 1/2), then G behaves like a random graph, that is, it is quasi-random in the sense of Chung, Graham, and Wilson [6]. This answers positively an open problem of Simonovits and Sós [10], who showed that in order to deduce that G is quasi-random one needs to assume that all sets of vertices have the correct number of triangles. A similar improvement of [10] is also obtained for any fixed graph other than the triangle, and for any edge density other than 1/2. The proof relies on a theorem of Gottlieb [7] in algebraic combinatorics, concerning the rank of set inclusion matrices.  相似文献   

12.
Acycle double cover of a graph,G, is a collection of cycles,C, such that every edge ofG lies in precisely two cycles ofC. TheSmall Cycle Double Cover Conjecture, proposed by J. A. Bondy, asserts that every simple bridgeless graph onn vertices has a cycle double cover with at mostn–1 cycles, and is a strengthening of the well-knownCycle Double Cover Conjecture. In this paper, we prove Bondy's conjecture for 4-connected planar graphs.  相似文献   

13.
《Quaestiones Mathematicae》2013,36(2):183-190
Abstract

The m'th chromatic number Xm(G) of a graph G is the least number of colours required to colour the vertices of G such that no m-clique of G is mono-coloured. For each k ≥ 2 and m ≥ 2 we determine for which r a graph G with m'th chromatic number k and clique number r exists. We also determine for which n a graph G exists with Xn (G + K) = Xm (G) = k.  相似文献   

14.
A graph G is diameter 2-critical if its diameter is 2, and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter 2-critical graph of order n is at most n2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. We use an important association with total domination to prove the conjecture for the graphs whose complements are claw-free.  相似文献   

15.
A subset S of vertices of a graph G is a secure set if |N [X] ∩ S| ≥ |N [X] ? S| holds for any subset X of S, where N [X] denotes the closed neighborhood of X. The minimum cardinality s(G) of a secure set in G is called the security number of G. We investigate the security number of lexicographic product graphs by defining a new concept of tightly-securable graphs. In particular we derive several exact results for different families of graphs which yield some general results.  相似文献   

16.
Our topic is an extension of the following classical result of Hall to hypergraphs: A bipartite graph G contains a perfect matching if and only if for each independent set X of vertices, at least |X| vertices of G are adjacent to some vertex of X. Berge generalized the concept of bipartite graphs to hypergraphs by defining a hypergraph G to be balanced if each odd cycle in G has an edge containing at least three vertices of the cycle. Based on this concept, Conforti, Cornuéjols, Kapoor, and Vušković extended Hall's result by proving that a balanced hypergraph G contains a perfect matching if and only if for any disjoint sets A and B of vertices with |A| > |B|, there is an edge in G containing more vertices in A than in B (for graphs, the latter condition is equivalent to the latter one in Hall's result). Their proof is non-combinatorial and highly based on the theory of linear programming. In the present paper, we give an elementary combinatorial proof. Received April 29, 1997  相似文献   

17.
Consider the class of matroids M with the property that M is not isomorphic to a wheel graph, but has an element e such that both M\e and M/e are isomorphic to a series-parallel extension of a wheel graph. We give a constructive characterization of such matroids by determining explicitly the 3-connected members of the class. We also relate this problem with excluded minor problems.Received May 30, 2003  相似文献   

18.
r -regular n-vertex graph G with random independent edge lengths, each uniformly distributed on (0, 1). Let mst(G) be the expected length of a minimum spanning tree. We show that mst(G) can be estimated quite accurately under two distinct circumstances. Firstly, if r is large and G has a modest edge expansion property then , where . Secondly, if G has large girth then there exists an explicitly defined constant such that . We find in particular that . Received: Februray 9, 1998  相似文献   

19.
A k-uniform hypergraph is hamiltonian if for some cyclic ordering of its vertex set, every k consecutive vertices form an edge. In 1952 Dirac proved that if the minimum degree in an n-vertex graph is at least n/2 then the graph is hamiltonian. We prove an approximate version of an analogous result for uniform hypergraphs: For every K ≥ 3 and γ > 0, and for all n large enough, a sufficient condition for an n-vertex k-uniform hypergraph to be hamiltonian is that each (k − 1)-element set of vertices is contained in at least (1/2 + γ)n edges. Research supported by NSF grant DMS-0300529. Research supported by KBN grant 2P03A 015 23 and N201036 32/2546. Part of research performed at Emory University, Atlanta. Research supported by NSF grant DMS-0100784.  相似文献   

20.
In this paper we describe a simple model for random graphs that have an n-fold covering map onto a fixed finite base graph. Roughly, given a base graph G and an integer n, we form a random graph by replacing each vertex of G by a set of n vertices, and joining these sets by random matchings whenever the corresponding vertices are adjacent in G. The resulting graph covers the original graph in the sense that the two are locally isomorphic. We suggest possible applications of the model, such as constructing graphs with extremal properties in a more controlled fashion than offered by the standard random models, and also "randomizing" given graphs. The main specific result that we prove here (Theorem 1) is that if is the smallest vertex degree in G, then almost all n-covers of G are -connected. In subsequent papers we will address other graph properties, such as girth, expansion and chromatic number. Received June 21, 1999/Revised November 16, 2000 RID="*" ID="*" Work supported in part by grants from the Israel Academy of Aciences and the Binational Israel-US Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号