首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
Poly(L ‐lactide) (PLLA)/multiwall carbon nanotube (MWNT) composites were prepared by the solvent‐ultrasonic‐casting method. Only very low concentrations of MWNTs (<0.08 wt %) were added in the composites. Isothermal and nonisothermal crystalline measurements were carried out on PLLA/MWNT composites to investigate the effect of MWNTs on PLLA crystalline behavior. DSC results showed that the incorporation of MWNTs significantly shortened the crystalline induction time and increased the final crystallinity of the composite, which indicated MWNTs have a strong nucleation effect on PLLA even at very low concentrations. The nonisothermal crystallization measurements showed that the MWNTs greatly speed up crystallization during cooling. From isothermal crystallization results, both PLLA and PLLA/MWNT composites samples closely followed a relationship based on Lauritzen‐Hoffman theory, with the regime II to III transition shifting to lower temperature with increasing MWNT concentration. A double melting peak appeared in both nonisothermal and isothermal measurements. The conditions under which it appeared were found to closely depend on the regime II‐III transition temperature obtained from Lauritzen‐Hoffman theory. From the magnitude and position of melting peaks, it is proposed that the double melting peak is caused by a disorder‐order crystal phase transition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2341–2352, 2009  相似文献   

2.
The mechanical properties and morphology of multiwall carbon nanotube (MWNT)/polypropylene (PP) nanocomposites were studied as a function of nanotube orientation and concentration. Through melt mixing followed by melt drawing, using a twin screw mini‐extruder with a specially designed winding apparatus, the dispersion and orientation of MWNTs was optimized in PP. Tensile tests showed a 32% increase in toughness for a 0.25 wt % MWNT in PP (over pure PP). Moreover, modulus increased by 138% with 0.25 wt % MWNTs. Transmission electron microscopy and scanning electron microscopy demonstrated qualitative nanotube dispersion and orientation. Wide angle X‐ray diffraction was used to study crystal morphology and orientation by calculating the Herman's orientation factor for the composites as function of nanotube loading and orientation. The addition of nanotubes to oriented samples causes the crystalline morphology to shift from α and mesophase to only α phase. Furthermore, the addition of nanotubes (without orientation) was found to cause isotropization of the PP crystal, and drawing was shown to improve crystal orientation through the orientation factor. In addition, differential scanning caloriometry qualitatively revealed little change in overall crystallinity. In conclusion, this work has shown that melt mixing coupled with melt drawing has yielded MWNT/PP composites with a unique combination of strength and toughness suitable for advanced fiber applications, such as smart fibers and high‐performance fabrics. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 864–878, 2006  相似文献   

3.
Differential scanning calorimetry (DSC), polarized optical microscopy, and X‐ray diffraction methods were used to investigate the isothermal crystallization behavior and crystalline structure of poly(?‐caprolactone) (PCL)/multiwalled carbon nanotube (MWNT) composites. PCL/MWNT composites were prepared via the mixing of a PCL polymer solution with carboxylic groups containing multiwalled carbon nanotubes (c‐MWNTs). Both Raman and Fourier transform infrared spectra indicated that carboxylic acid groups formed at both ends and on the sidewalls of the MWNTs. A transmission electron microscopy micrograph showed that c‐MWNTs were well separated and uniformly distributed in the PCL matrix. DSC isothermal results revealed that introducing c‐MWNTs into the PCL structure caused strongly heterogeneous nucleation induced by a change in the crystal growth process. The activation energy of PCL drastically decreased with the presence of 0.25 wt % c‐MWNT in PCL/c‐MWNT composites and then increased with increasing MWNT content. The result indicated that the addition of c‐MWNT to PCL induced heterogeneous nucleation (lower total activation energy) at a lower c‐MWNT content and then reduced the transportation ability of polymer chains during crystallization processes at a higher MWNT content (higher total activation energy). A correlation between the crystallization kinetics, melting behavior, and crystalline structure of PCL/c‐MWNT composites was also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 598–606, 2006  相似文献   

4.
Polyoxymethylene (POM)/multiwalled carbon nanotubes (MWNTs) nanocomposites were prepared through a simple solution‐evaporation method assisted by ultrasonic irradiation. To enhance the dispersion of MWNTs in POM, MWNTs were chemically functionalized with PEG‐substituted amine (MWNT‐g‐PEG), which exhibited strong affinity with POM due to their similar molecular structure. The thermal conductivity and the mechanical properties of the composites were investigated, which showed that the thermal conductive properties of POM were improved remarkably in the presence of MWNTs, whereas reduced by using MWNT‐g‐PEG due to the heat transport barrier of the grafted‐PEG‐substituted amine chain. A nonlinear increase of the thermal conductivity was observed with increasing MWNTs content, and the Maxwell‐Eucken model and the Agari model were used for theoretical evaluation. The relatively high effective length factor of the composite predicted with mixture equation indicated that there were few entangles of MWNTs for the samples of MWNT‐g‐PEG in the composites. The mechanical strength of the composites can be improved remarkably by using suitable content of such functionalized MWNTs, and with the increase of the aliphatic chain length of PEG‐substituted amine, the toughness of the composites can be enhanced. Transmission electron microscope result indicated that MWNT‐g‐PEG exhibited strong affinity with POM and a good dispersion of MWNTs was achieved in POM matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 905–912, 2010  相似文献   

5.
In this work, flexible nanofibrous membranes (mats) of poly(ethylene oxide) (PEO) with and without multiwall carbon nanotubes (MWNTs) were fabricated by electrospinning. The effects of annealing and MWNT concentration on mat morphology, MWNT dispersion within the nanofibers, and the mechanical properties of electrospun mats were studied. Annealing temperatures ranged from 60 °C to 64 °C [near the melting temperature (64 °C via differential scanning calorimetry)] for 4 minutes. Samples were annealed with and without applied tension (constrained and unconstrained annealing). Annealing at the highest temperature (64 °C), before the loss of fibrous morphology, significantly improved fiber–fiber bonding and therefore the tensile strength of the mats. Compared with unconstrained annealing, constrained annealing introduced fiber alignment (and therefore molecular orientation) along the tensile axis (direction of constraint) during annealing and resulted in a significant increase in modulus for all samples (with and without MWNTs). The use of constrained annealing may be a facile approach to enhance modulus in nanofibrous mats while maintaining high porosity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 787–796  相似文献   

6.
The mechanical properties of multiwall carbon nanotube (MWNT)/poly(methyl methacrylate) (PMMA) nanocomposites were studied as a function of nanotube orientation, length, concentration, and type. Orientation and dispersion were assessed by electron microscopy. A processing parameter study revealed the robust nature of fabricating nanotube/PMMA nanocomposites. An optimal set of extrusion conditions was found for minimizing the aggregate size in single‐wall carbon nanotube (SWNT)/PMMA nanocomposites; this set was also used for the fabrication of the MWNT/PMMA composites. Good dispersion was achieved for MWNTs in PMMA at 0.1–10 wt % loading levels (with the best dispersions at the lower loading levels). The orientation of MWNTs in PMMA proved to be the only way to substantially toughen the nanocomposite. A level of 1 wt % MWNTs in PMMA (oriented nanocomposite) exhibited the largest increase in tensile toughness with a 170% improvement over oriented PMMA. Increases in the modulus and yield strength were not nearly as pronounced (and occurred only at the highest loading of MWNTs, which was 10 wt %) with increases of 38 and 25%, respectively. A failure mechanism was proposed in which orientation of the MWNTs (normal to the direction of craze propagation and crack development) enabled them to toughen the brittle PMMA by bridging cracks that developed (via craze precursors) during the tensile test. None of the nanotube/PMMA composites showed mechanical properties close to the values expected from simple rule of mixture and orientation considerations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2690–2702, 2004  相似文献   

7.
Pristine multiwalled carbon nanotubes (P‐MWNTs) were functionalized with 4‐chlorobenzoic acid via “direct” Friedel‐Crafts acylation in polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5) medium. The resultant 4‐chlorobenzoyl‐functionalized MWNTs (F‐MWNTs) were soluble in chlorinated solvents such as dichloromethane, chloroform, and carbon tetrachloride. A large scale of nylon 610/F‐MWNT composite could be conveniently prepared by in situ interfacial polymerization of 1, 6‐hexamethylenediamine (HMDA) in an aqueous phase, and sebacoyl chloride with F‐MWNTs in an organic phase. Similarly, nylon 610/P‐MWNT composite was also prepared for comparison. The state of F‐MWNTs dispersion in nylon 610 matrix was distinctively better than that of P‐MWNTs, which could be clearly discerned by both naked eye and scanning electron microcopy (SEM). As a result, the tensile strength of nylon 610/F‐MWNT composite was 4.9‐fold higher than that of nylon 610/P‐MWNT composite. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6041–6050, 2008  相似文献   

8.
The anisotropic mechanical properties of the thermoplastic elastomer (TPE) in situ reinforced with thermotropic liquid‐crystalline polymer (TLCP) fibers were investigated by uniaxial, strip‐biaxial, and equibiaxial tensile measurements. The in situ composite sheets were prepared from an immiscible blend of a TLCP, Rodrun LC3000, and a TPE, styrene‐(ethylene butylene)‐styrene (SEBS) triblock copolymer, by a melt extrusion process. The uniaxial orientation of the TLCP fibers in the TPE matrix generated during processing yielded a significant mechanical anisotropy in the composites. The biaxial tensile measurements clearly demonstrated the anisotropic mechanical properties of the composites: The modulus in the direction parallel to the machine direction (MD) was considerably higher than that in the transverse direction (TD), even at large deformations; in equibiaxial stretching, the yield strain in the MD was smaller than that in the TD; the composite containing 10 wt % of TLCP exhibited the highest mechanical anisotropy among the composites, with 0–30 wt % TLCP. The latter result was in accord with the SEM observation that the composite with 10 wt % of TLCP possessed the best fibrillar morphology and the highest degree of uniaxial orientation of the TLCP fibers. The yield strains in uni‐ and biaxial elongation for the composite containing 10 wt % of TLCP were almost the same as those for the neat styrene‐ethylene butylene‐styrene. The TLCP phase with good fibrillation did not appreciably alter the original yielding characteristics of the elastomer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 135–144, 2005  相似文献   

9.
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field‐emission scanning electron microscopy (FESEM), and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)–shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1413–1418, 2006  相似文献   

10.
Amino modified multiwall carbon nanotubes (MWNTs) are prepared, respectively, by two ways: the conventional one‐step method that directly treats acyl chloride functionalized MWNTs with 4, 4′‐diaminodiphenyl ether (ODA), giving the amino modified MWNT (Di‐MWNT), as well as an improved two‐step method in which acyl chloride functionalized MWNT react with mono‐Boc protected ODA first and then the Boc‐groups are deprotected to provide the amino modified MWNT (NH2‐MWNT). Anhydride‐terminated polyimide (PI) composite films based on NH2‐MWNT and Di‐MWNT are fabricated by solution blending and consequent planar casting. The exposed amino groups of NH2‐MWNT create strong covalent bonds with the anhydride‐terminated polyamide acid in the course of N‐acylation and curing chemical reactions. Solubility examinations of nanotubes and morphologies of the composite films indicate that the dispersion of NH2‐MWNT is significantly better than Di‐MWNT in PI matrix and NH2‐MWNT can form connected network throughout the PI matrix which makes the NH2‐MWNT/PI film presenting superior conductivity. Both morphologies and mechanical properties of the composites show that NH2‐MWNT has stronger interfacial interaction with the PI matrix. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3449–3457  相似文献   

11.
Polypropylene (PP) nanocomposites with three different functionalized‐multiwalled nanotubes (F‐MWNTs) are compared in terms of their thermomechanical properties, morphology, oxygen permeability, and optical transparency. The F‐MWNTs dodecanol‐MWNT, dodecylamine‐MWNT, and 1,1,1,3,3,3‐hexafluoro‐2‐phenyl‐2‐propanol‐MWNT were combined with PP to produce hybrid films. The variations of their properties with the matrix polymer F‐MWNT content are discussed. Transmission electron microscopy photographs show that most of the F‐MWNTs are dispersed homogeneously in the matrix polymer on the nanoscale, although some agglomerated F‐MWNT particles are formed. Even composites with low F‐MWNT contents (≤3 wt %) exhibit much better thermomechanical values than pure PP. The gas permeability of the hybrids was found to decrease linearly with increases in the F‐MWNT content of the PP matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

12.
The nitroxide‐mediated radical polymerization of styrene was carried out on the surfaces of multiwalled carbon nanotubes (MWNTs) initiated by an MWNT‐supported initiator multiwalled carbon nanotube–2″,2″,6″,6″‐tetramethylpiperidinyloxy (MWNT–Tempo). The content of polystyrene grafted from the surface was controlled by changes in the polymerization conditions, such as the reaction times or the ratios of monomers to initiators. The obtained polystyrene‐grafted multiwalled carbon nanotubes (MWNT–PSs) were further used to initiate the polymerization of 4‐vinylpyridine to get polystyrene‐b‐poly(4‐vinylpyridine)‐grafted multiwalled carbon nanotubes (MWNT–PS‐b‐P4VPs). In contrast to unmodified MWNTs, MWNT–PSs had relatively good dispersibility in various organic solvents, such as tetrahydrofuran, CHCL3, and o‐dichlorobenzene. The structures and properties of MWNT–PSs and MWNT–PS‐b‐P4VPs were characterized and studied with several methods, including thermogravimetric analysis, Fourier transform infrared, ultraviolet–visible, and transmission electron microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4656–4667, 2006  相似文献   

13.
Summary: We report on a new route to synthesize polymeric carbon nanotube‐polyurethane (PU) nanocomposites. Multi‐walled carbon nanotubes (MWNTs) functionalized by chemical modification were incorporated as a crosslinker in prepolymer, which was prepared from a reaction of 4,4′‐methylene bis(phenylisocyanate) and poly(ε‐caprolactone)diol. The reinforcing effect of carbon nanotubes in crosslinked MWNT‐PU nanocomposites was more pronounced as compared to that in conventional MWNT‐PU nanocomposites. The optimum content of chemically modified MWNTs for crosslinking with polyurethane was determined to be approximately 4 wt.‐% in our samples, based on observation of a NCO peak in FT‐IR spectroscopy. MWNT‐crosslinked polyurethane containing 4 wt.‐% modified MWNTs showed the highest modulus and tensile strength among the composites and pure PU. The presence of functionalized MWNTs in the polymeric nanocomposite yielded enhancement in the thermal stability due to crosslinking of the MWNTs with PU.

Possible configuration for MWNT‐PU nanocomposite molecules and FT‐IR spectra of samples obtained during reaction of prepolymer with functionalized MWNTs (second step).  相似文献   


14.
Poly(lactic acid)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PLA) were prepared by the direct melt‐polycondensation of L ‐lactic acid with carboxylic acid‐functionalized MWNT (MWNT‐COOH) and then mixed with a commercially available neat PLA to prepare PLA/MWNT‐g‐PLA nanocomposites. Morphological, thermal, mechanical, and electrical characteristics of PLA/MWNT‐g‐PLA nanocomposites were investigated as a function of the MWNT content and compared with those of the neat PLA, PLA/MWNT, and PLA/MWNT‐COOH nanocomposites. It was identified from FE‐SEM images that PLA/MWNT‐g‐PLA nanocomposites exhibit good dispersion of MWNT‐g‐PLA in the PLA matrix, while PLA/MWNT and PLA/MWNT‐COOH nanocomposites display MWNT aggregates. As a result, initial moduli and tensile strengths of PLA/MWNT‐g‐PLA composites are much higher than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, which stems from the efficient reinforcing effect of MWNT‐g‐PLA in the PLA matrix. In addition, the crystallization rate of PLA/MWNT‐g‐PLA nanocomposites is faster than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, since MWNT‐g‐PLA dispersed in the PLA matrix serves efficiently as a nucleating agent. It is interesting that, unlike PLA/MWNT nanocomposites, surface resistivities of PLA/MWNT‐g‐PLA nanocomposites did not change noticeably depending on the MWNT content, demonstrating that MWNTs in PLA/MWNT‐g‐PLA are wrapped with the PLA chains of MWNT‐g‐PLA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This study seeks to investigate how the enhanced properties of the nanoclay E‐glass/epoxy composite can withstand the combined effects of ultraviolet radiation, moisture, and rain. The montmorillonite nanoclay's affinity to moisture compounded the moisture absorption ability of the nanoclay E‐glass/epoxy composites. The moisture in the polymer structure caused delamination, debonding of the fibers/matrix, microvoids, and fiber pullouts. The high clay content (2 wt %), therefore, recorded the highest rate of degradation of 15% in flexural stress for the first 20 days, compared to about 8 and 6% loss for the unmodified (0 wt %) and 1 wt % composites respectively. However, as the aging progressed beyond 20 days, the rate of degradation of the nanoclay E‐glass/epoxy composites laminates was steady at 10 and 18%, respectively, for the 1 and 2 wt %, while that of the unmodified polymer continued to degrade progressively. On the contrary, the viscoelastic properties of the nanoclay E‐glass/epoxy composites continued to deteriorate at a faster rate than the unmodified polymer composite. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1024–1029  相似文献   

16.
l ‐lactide monomers were grafted onto cellulose nanofibers (CNFs) via ring‐opening polymerization, forming poly(lactic acid) grafted cellulose nanofibers (PLA‐g‐CNFs). PLA‐g‐CNFs and pristine PLA were then blended in chloroform and dried to prepare a master batch. PLA‐g‐CNFs/PLA composite filaments targeted for 3D printing were produced by compounding the master batch in PLA matrix and melt extrusion. The as‐extruded composite filaments were subsequently thermal annealed in a conventional oven, and their morphological, thermal, and mechanical properties were evaluated. PLA was successfully grafted on the surface of CNFs as demonstrated by elemental analysis, and the concentration of grafted PLA was estimated to be 33 wt %. The grafted PLA were highly crystallized, contributing to the growth of crystalline regions of PLA matrix. The incorporation of PLA‐g‐CNFs improved storage modulus of the composite filaments in both low temperature glassy state and high temperature rubbery state. Postextrusion annealing treatment led to 28 and 63% increases for tensile modulus and strength of the filaments, respectively. Simulated Young's moduli from the Halpin‐Tsai and Krenchel models were found comparable with the experimental values. The formed composite filaments are suitable for use in 3D printing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 847–855  相似文献   

17.
The poly(N‐vinylcarbazole)‐grafted MWNTs (MWNT‐PVK) hybrid materials were synthesized in the presence of S‐1‐Dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate (DDAT)‐covalently functionalized multiwalled carbon nanotubes (MWNT‐DDAT) as reversible addition–fragmentation chain transfer (RAFT) agent. Incorporation of the PVK moieties onto the MWNTs surface can considerably improve the solubility and processability of MWNTs. For all MWNT‐PVK hybrid materials, they are soluble in some common organic solvents such as toluene, THF, chloroform, DMF and others. In contrast to the UV/Vis spectrum of DDAT‐PVK, which was synthesized by use of DDAT as RAFT agent under the same synthetic condition, in the visible region, the absorption spectrum of MWNT‐PVK exhibited a typical electronic absorption characteristics of solubilized carbon nanotubes, in which the absorbance decreases gradually in the range of 350–600 nm. At the same level of linear transmission the MWNT‐PVK with 79.2% PVK moieties in the material structure possesses best optical limiting performance in comparison with the other MWNT‐PVK composites, MWNTs and C60. The significant NLO responses manifest the MWNT‐PVK materials suitable candidate for viable optical limiting devices. Light scattering, originating from the thermal‐induced microplasmas and/or microbubbles, is responsible for the optical limiting. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3161–3168, 2010  相似文献   

18.
Highly oriented, large area continuous composite nanofiber sheets made from surface-oxidized multiwalled carbon nanotubes (MWNTs) and polyacrylonitrile (PAN) were successfully developed using electrospinning. The preferred orientation of surface-oxidized MWNTs along the fiber axis was determined with transmission electron microscopy and electron diffraction. The surface morphology and height profile of the composite nanofibers were also investigated using an atomic force microscope in tapping mode. For the first time, it was observed that the orientation of the carbon nanotubes within the nanofibers was much higher than that of the PAN polymer crystal matrix as detected by two-dimensional wide-angle X-ray diffraction experiments. This suggests that not only surface tension and jet elongation but also the slow relaxation of the carbon nanotubes in the nanofibers are determining factors in the orientation of carbon nanotubes. The extensive fine absorption structure detected via UV/vis spectroscopy indicated that charge-transfer complexes formed between the surface-oxidized nanotubes and negatively charged (-CN[triple bond]N:) functional groups in PAN during electrospinning, leading to a strong interfacial bonding between the nanotubes and surrounding polymer chains. As a result of the highly anisotropic orientation and the formation of complexes, the composite nanofiber sheets possessed enhanced electrical conductivity, mechanical properties, thermal deformation temperature, thermal stability, and dimensional stability. The electrical conductivity of the PAN/MWNT composite nanofibers containing 20 wt % nanotubes was enhanced to approximately 1 S/cm. The tensile modulus values of the compressed composite nanofiber sheets were improved significantly to 10.9 and 14.5 GPa along the fiber winding direction at the MWNT loading of 10 and 20 wt %, respectively. The thermal deformation temperature increased with increased MWNT loading. The thermal expansion coefficient of the composite nanofiber sheets was also reduced by more than an order of magnitude to 13 x 10(-6)/ degrees C along the axis of aligned nanofibers containing 20 wt % MWNTs.  相似文献   

19.
We demonstrate here a feasible approach to the preparation of multiwalled carbon nanotube (MWNT)/polypyrrole (PPy) core–shell nanowires by in situ inverse microemulsion. Transmission electron microscopy and scanning electron microscopy showed that the carbon nanotubes were uniformly coated with a PPy layer with a thickness of several to several tens of nanometers, depending on the MWNT content. Fourier transform infrared spectra suggested that there was strong interaction between the π‐bonded surface of the carbon nanotubes and the conjugated structure of the PPy shell layer. The thermal stability and electrical conductivity of the MWNT/PPy composites were examined with thermogravimetric analysis and a conventional four‐probe method. In comparison with pure PPy, the decomposition temperature of the MWNT/PPy (1 wt % MWNT) composites increased from 305 to 335 °C, and the electrical conductivity of the MWNT/PPy (1 wt % MWNT) composites increased by 1 order of magnitude. The current–voltage curves of the MWNT/PPy nanocomposites followed Ohm's law, reflecting the metallic character of the MWNT/PPy nanocomposites. The cyclic voltammetry measurements revealed that PPy/MWNT composites showed an enhancement in the specific charge capacity with respect to that of pure PPy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6105–6115, 2005  相似文献   

20.
Multiwall carbon nanotube (MWNT) was grafted with polyacrylate‐g‐poly (ethylene glycol) via the following two steps. First, hydroxyl groups on the surface of acid‐treated MWNT reacted with linear poly(acryloyl chloride) to generate graft on MWNT; secondly, the remaining acryloyl chloride groups were subjected to esterification with poly(ethylene glycol) leading the grafted chains on the surface of MWNTs. Thus obtained grafted MWNT was characterized using Fourier transform infrared spectrometer, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Thermogravimetric analysis showed that the weight fraction of grafted polymers amounted to 80% of the modified MWNT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6880–6887, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号