首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous free radical and cationic photopolymerizations of mixtures of multifunctional acrylate and oxetane monomers were carried out to provide hybrid interpenetrating network polymers. The use of “kick‐started” oxetanes in which oxetane monomers are accelerated by the use of small amounts of certain highly substituted epoxides provides dual independent radical and cationic systems with similar rates of photopolymerization leading to homogeneous interpenetrating networks. The combined photopolymerizations are very rapid and afford crosslinked network films that are colorless, hard, and transparent. The networks display no indications of phase separation. The use of this technology in various applications such as coatings, 3D imaging, and for composites is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 594–601  相似文献   

2.
The ability of certain alkyl substituted epoxides to accelerate the photoinitiated cationic ring‐opening polymerizations of oxetane monomers by substantially reducing or eliminating the induction period altogether has been termed by us “kick‐starting.” In this communication, the rates of photopolymerization of several model “kick‐started” oxetane systems were quantified and compared with the analogous biscycloaliphatic epoxide monomer, 3,4‐epoxycyclohexylmethyl 3′,4′‐epoxycyclohexanecarboxylate (ERL). It has been found that the “kick‐started” systems undergo photopolymerization at rates that are at least two‐fold faster than ERL. These results suggest that “kick‐started” oxetanes could replace ERL in many applications in which high speed ultraviolet induced crosslinking photopolymerizations are carried out. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 586–593  相似文献   

3.
A kinetic study was conducted of the independent photoinitiated cationic polymerization of a number of epoxide monomers and mixtures of these monomers with N‐vinylcarbazole. The results show that these two different classes of monomers undergo complex synergistic interactions with one another during polymerization. It was demonstrated that N‐vinylcarbazole as well as other carbazoles are efficient photosensitizers for the photolysis of both diaryliodonium and triarylsulfonium salt photoinitiators. In the presence of large amounts of N‐vinylcarbazole, the rates of the cationic ring‐opening photopolymerization of epoxides are markedly accelerated. This effect has been ascribed to a photoinitiated free‐radical chain reaction that results in the oxidation of monomeric and polymeric N‐vinylcarbazole radicals by the onium salt photoinitiators to generate cations. These cations can initiate the ring‐opening polymerization of the epoxides, leading to the production of copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3697–3709, 2000  相似文献   

4.
We describe a new strategy for preparation of benzoxazine monomers based on in situ preparation of a thiol‐functionalized benzoxazine and successive chemical modification of the thiol moiety. The thiol‐functionalized benzoxazine can be prepared from its precursor bearing two benzoxazine moieties linked by disulfide bond. Reductive cleavage of the disulfide bond of the precursor with using triphenylphosphine as a reducing agent allows successful preparation of the thiol‐functionalized benzoxazine. By performing this reduction process in the presence of epoxides and acrylates, the formation of the thiol moiety and its successive reaction with those electrophiles proceed efficiently to give the corresponding benzoxazines with sulfide moieties. The benzoxazine monomers thus prepared exhibit much higher polymerization ability than those without sulfide moiety. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1448–1457  相似文献   

5.
We report the synthesis and ion‐binding properties of four poly(crown‐ethers) displaying either one or two crown‐ethers (15‐crown‐5 or 18‐crown‐6) on every third carbon alongside the backbone. The polymers were synthesized by living anionic ring‐opening polymerization of disubstituted cyclopropane‐1,1‐dicarboxylates monomers. Cation binding of the polychelating polymers and corresponding monomers to Na+ and K+ was evaluated by picrate extraction and isothermal calorimetry titration. This novel family of poly(crown‐ethers) demonstrated excellent initial binding of the alkali ions to the polymers, with a higher selectivity for potassium. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2337–2345  相似文献   

6.
This overview provides insights into the current state‐of‐the‐art solutions to insertion copolymerization of functional olefinic monomers. The challenges in insertion copolymerization of functional olefinic monomers, with a special emphasis on vinyl halides, are highlighted. The crucial design of the Pd–phosphinesulfonate [Pd(PO)] enables up to 3.6 mol % incorporation of vinyl fluoride (VF) in an ethylene–VF copolymerization reaction. In a significant development, insertion copolymerization of industrially relevant functional olefin, that is, vinyl chloride (VC), was unambiguously ascertained, and a detectable amount of VC (0.4 mol %) was incorporated (at the chain end). In a detailed investigation, the in situ existence of (PO)Pd? H species during the polymerization was revealed, and it was demonstrated that these are indeed responsible for VC incorporation. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1–6  相似文献   

7.
Asymmetrically substituted head‐to‐head polyacetylenes with phenyl and triphenylamine, thienyl or pyrenyl side groups were synthesized through anionic or controlled radical polymerization of 2,3‐disubstituted‐1,3‐butadienes and subsequent dehydrogenation process. Anionic polymerizations of the designed monomers bearing pendent triphenylamine and thienyl group gave narrow disperse disubstituted precursor polybutadienes with exclusive 1,4‐ or 4,1‐structure, which were confirmed by GPC and NMR measurements. In addition, the monomers possessing pyrenyl group were polymerized via nitroxide mediated radical polymerization and the resulting polymers were obtained with controlled molecular weight and low polydispersities. These polybutadiene precursors were then dehydrogenated in the presence of 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone. Thus asymmetrically substituted head‐to‐head polyacetylenes were obtained as indicated by 1H NMR. The properties of polybutadiene precursors and the corresponding polyacetylenes were analyzed by UV–vis, DSC, and TGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 395–402  相似文献   

8.
Methacrylate‐based hydrogels, such as homo‐ and copolymers of 2‐hydroxyethyl methacrylate (HEMA), have demonstrated significant potential for use in biomedical applications. However, many of these hydrogels tend to resist cell attachment and growth at their surfaces, which can be detrimental for certain applications. In this article, glycidyl methacrylate (GMA) was copolymerized with HEMA to generate gels functionalized with epoxide groups. The epoxides were then functionalized by two sequential click reactions, namely, nucleophilic ring opening of epoxides with sodium azide and then coupling of small molecules and peptides via Huisgen's copper catalyzed 1,3‐dipolar cycloaddition of azides with alkynes. Using this strategy it was possible to control the degree of functionalization by controlling the feed ratio of monomers during polymerization. In vitro cell culture of human retinal pigment epithelial cell line (ARPE‐19) with the hydrogels showed improved cell adhesion, growth and proliferation for hydrogels that were functionalized with a peptide containing the RGD sequence. In addition, the cell attachment progressively decreased with increasing densities of the RGD containing peptide. In summary, a facile methodology has been presented that gives rise to hydrogels with controlled degrees of functionality, such that the cell response is directly related to the levels and nature of that functionality. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1781–1789  相似文献   

9.
Thermoresponsive brush copolymers with poly(propylene oxide‐ran‐ethylene oxide) side chains were synthesized via a “grafting from” technique. Poly(p‐hydroxystyrene) was used as the backbone, and the brush copolymers were prepared by random copolymerization of mixtures of oxyalkylene monomers, using metal‐free anionic ring‐opening polymerization, with the phosphazene base (t‐BuP4) being the polymerization promoter. By controlling the monomer feed ratios in the graft copolymerization, two samples with the same side‐chain length and different compositions were prepared, both of which possessed high molecular weights and low molecular weight distributions. The results from light scattering and fluorescence spectroscopy indicated that the brush copolymers in their dilute aqueous solutions were near completely solvated at low temperature and underwent slight intramolecular chain contraction/association and much more profound intermolecular aggregation at different stages of the step‐by‐step heating process. Above 50 °C, very turbid solutions, followed by macrophase separation, were observed for both of the samples, which implied that it was difficult for the brush copolymers to form stable nanoscopic aggregates at high temperature. All these observations were attributed, at least partly, to the distribution of the oxyalkylene monomers along the side chains and the overall brush‐like molecular architecture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2320–2328, 2010  相似文献   

10.
This study presents the development of microreactor protocols for the successful continuous flow end group modification of atom transfer radical polymerization precursor polymers into azide end‐capped materials and the subsequent copper‐catalyzed azide alkyne click reactions with alkyne polymers, in flow. By using a microreactor, the reaction speed of the azidation of poly(butyl acrylate), poly(methyl acrylate), and polystyrene can be accelerated from hours to seconds and full end group conversion is obtained. Subsequently, copper‐catalyzed click reactions are executed in a flow reactor at 80 °C. Good coupling efficiencies are observed and various block copolymer combinations are prepared. Furthermore, the flow reaction can be carried out in only 40 min, while a batch procedure takes several hours to reach completion. The results indicate that the use of a continuous flow reactor for end group modifications as well as click reactions has clear benefits towards the development and improvement of well‐defined polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1263–1274  相似文献   

11.
The photoinitiated cationic ring‐opening polymerizations of certain epoxides and 3,3‐disubstituted oxetanes display the characteristics of frontal polymerizations. When irradiated with UV light, these monomers display a marked induction period, during which little conversion of the monomer to the polymer takes place. The local application of heat to an irradiated monomer sample results in polymerization that occurs as a front propagating rapidly throughout the entire reaction mass. For the characterization of these frontal polymerizations, the use of a new monitoring technique, employing optical pyrometry, has been instituted. This method provides a simple, rapid means of following these fast polymerizations and quantitatively determining their frontal velocities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1630–1646, 2004  相似文献   

12.
Corey‐Chaykovsky epoxidation has been widely applied in the conversion of aldehydes and ketones to epoxides with sulfonium and sulfoxonium ylides. The reverse transformation is realized for conversion of geminal disubstituted epoxides to ketones in the presence of DABCO in refluxing mesitylene. The method is a weak basic transformation from epoxides to ketones with loss of a methylene group and can be applied as an alternative strategy of the acid‐catalyzed Meinwald rearrangement or oxidation for conversion of epoxides to carbonyl compounds.  相似文献   

13.
A facile, general, and highly efficient one‐pot approach to obtain azobenzene (azo)‐containing molecularly imprinted polymer (MIP) nanoparticles with photoresponsive template binding and release properties in aqueous media is described, which involves the combined use of hydrophilic macromolecular chain transfer agent‐mediated reversible addition‐fragmentation chain transfer precipitation polymerization and easily available water‐insoluble azo functional monomers. The resulting azo‐containing MIPs were characterized with dynamic laser scattering (DLS), SEM, FTIR, static contact angle and water dispersion studies, and equilibrium binding experiments. They have proven to be nanoparticles (their diameters being around 104–397 nm, as determined by DLS in methanol) with surface‐grafted hydrophilic polymer brushes and exhibit excellent pure water‐compatible template binding properties. Moreover, obvious photoregulated template binding behaviors were observed for such azo‐containing MIP nanoparticles, which led to their largely accelerated template release in the aqueous media under the UV light irradiation. Furthermore, the general applicability of the strategy was also demonstrated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1941–1952  相似文献   

14.
The synthesis and physical properties of new silicon‐containing polyfunctional cyanate ester monomers methyl[tris(4‐cyanatophenyl)]silane and tetrakis(4‐cyanatophenyl)silane, as well as polycyanurate networks formed from these monomers are reported. The higher crosslinking functionality compared to di(cyanate ester) monomers enables much higher ultimate glass transition temperatures to be obtained as a result of thermal cyclotrimerization. The ability to reach complete conversion is greatly enhanced by cocure of the new monomers with di(cyanate ester) monomers such as 1,1‐bis(4‐cyanatophenyl)ethane. The presence of silicon in these polycyanurate networks imparts improved resistance to rapid oxidation at elevated temperatures, resulting in char yields as high as 70% under nitrogen and 56% in air in the best‐performing networks. The water uptake in the silicon‐containing networks examined is 4–6 wt % after 96 h of immersion at 85 °C, considerably higher than both carbon‐containing and/or di(cyanate ester) analogs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 767–779  相似文献   

15.
Polyesters constitute an important class of materials for in vivo biomedical applications. Poly(?‐caprolactone) (PCL) is a hydrophobic biodegradable polyester which is employed to a lesser extent in drug delivery applications due to its rather limited range of physicochemical characteristics. Here, we present a new paradigm for the synthesis of functionalized PCL via copolymerization of caprolactone with α,ω‐epoxy esters. Ethyl 2‐methyl‐4‐pentenoate oxide was used as a monomer which was copolymerized with ?‐caprolactone to yield random copolymers of poly(?‐caprolactone‐co‐ethyl‐2‐methyl‐4‐pentenoate oxide). The reaction conditions were optimized to generate functionalization greater than 25%. The use of ester‐epoxides favors a statistical and uniform distribution of monomer along the polymer backbone, which while preserving some of the key properties of PCL such as glass transition that is below room temperature, allows the tailoring of the melting behavior of PCL. The strategy presented herein opens up new avenues for engineering PCL properties for biomedical applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3375–3382  相似文献   

16.
A study of the photoinitiated and thermally initiated cationic polymerizations of several monomer systems with S,S‐dialkyl‐S‐(3,5‐dimethylhydroxyphenyl)sulfonium salt (HPS) photoinitiators bearing different lengths of alkyl chains on the positively charged sulfur atom has been conducted. HPS photoinitiators are capable of photoinitiating the cationic polymerization of a wide variety of epoxy and vinyl ether monomers directly on irradiation with short‐wavelength UV light. Aryl ketone photosensitizers are effective in extending the spectral response of these photoinitiators into the long‐wavelength UV region. Kinetic studies with real‐time infrared spectroscopy show that HPS photoinitiators exhibit good efficiency in the polymerization of epoxide and vinyl ether monomers. Comparative studies also demonstrate that S,S‐dimethyl‐S‐(3,5‐dimethyl‐2‐hydroxyphenyl)sulfonium salts are more active photoinitiators than their isomeric S,S‐dimethyl‐S‐(3,5‐dimethyl‐4‐hydroxyphenyl)sulfonium salt counterparts. Both types of HPS photoinitiators display reversible photolysis as a result of facile termination reactions that take place between the growing chains ends with the photogenerated sulfur ylides. Preliminary studies have shown that HPS photoinitiators can also be employed as thermal initiators for the cationic ring‐opening polymerization of epoxides at moderate temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2570–2587, 2003  相似文献   

17.
The selective transformation of CO2 and epoxides to afford completely alternating copolymers remains a topic of much interest for the potential utilization of carbon dioxide in chemical synthesis. The use of salicylaldimine (salen)‐metal complexes and their saturated (salan)‐metal versions have proven to be the most effective and robust single‐site catalyst for these processes. Herein, we report on mechanistic aspects of the copolymerization of alicyclic and aliphatic epoxides with CO2 in toluene solution and in neat epoxides in the presence of a (salan)CrCl/onium salt catalyst system. The activation barriers for both cyclohexene oxide(CHO)/CO2 and propylene oxide(PO)/CO2 were shown to be significantly higher in toluene solution than those previously reported for reactions carried out under solventless conditions. Terpolymerization of CHO/vinylcyclohexene oxide/CO2 was shown via Fineman‐Ross analysis at 60 °C to proceed with little monomer selectivity, for example, rCHO = 1.03 and rVCHO = 0.847. On the other hand, terpolymerization of CHO/PO/CO2 occurred at 25 °C with a propensity for incorporation of PO in the polymer. However, at 40 °C, Fineman‐Ross analysis revealed rCHO and rPO values of 0.869 and 1.49, thereby affording a terpolymer with a more equal distribution of monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
N,N′‐disubstituted hyperbranched polyureas with methyl, benzyl, and allyl substitutents were synthesized starting from AB2 monomers based on 3,5‐diamino benzoic acid. Carbonyl azide approach, which generates isocyanate group in situ on thermal decomposition, was used for the protection of isocyanate functional groups. The N‐substituted hyperbranched polymers can be considered as the new class of internally functionalized hyperbranched polyureas wherein the substituent can function either as receptor or as a chemical entity for selective transformations as a tool to tailor the properties. The chain‐ends were also modified by attaching long chain aliphatic groups to fully realize the interior functionalization. This approach opens up a possible synthetic route wherein different functional substituents can be used to generate a library of internally functionalized hyperbranched polymers. All the hyperbranched polyureas were characterized by FTIR, 1H‐NMR, DSC, TGA, and size exclusion chromatography. Degree of branching in these N,N′‐disubstituted hyperbranched polyureas, as calculated by 1H‐NMR spectroscopy using model compounds, was found to be lower than the unsubstituted hyperbranched polyurea and is attributed to the lower reactivity of N‐substituted amines compared to that of unsubstituted amines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5134–5145, 2004  相似文献   

19.
The utility of aza‐Michael addition chemistry for post‐polymerization functionalization of enzymatically prepared polyesters is established. For this, itaconate ester and oligoethylene glycol are selected as monomers. A Candida Antarctica lipase B catalyzed polycondensation reaction between the two monomers provides the polyesters, which carry an activated carbon‐carbon double bond in the polymer backbone. These electron deficient alkenes represent suitable aza‐Michael acceptors and can be engaged in a nucleophilic addition reaction with small molecular mono‐amines (aza‐Michael donors) to yield functionalized linear polyesters. Employing a poly‐amine as the aza‐Michael donor, on the other hand, results in the formation of hydrophilic polymer networks. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 745–749  相似文献   

20.
Photoinduced free radical polymerization of vinyl monomers by using semiconductor inorganic nanoparticles (NPs) is investigated. Zinc oxide and iron‐doped zinc oxide were used as photosensitive compounds to initiate the polymerization of acrylamide as a water‐soluble monomer in aqueous environment and methyl methacrylate as an oil‐soluble monomer in organic media under UV‐light irradiation. The method uses photochemically generated electrons and holes from the NPs to form initiating hydroxyl radicals in aqueous media, while tertiary amines and iodonium salt served as coinitiator in organic media. The initiation mechanism in organic media involves hydrogen abstraction or reduction processes via charge carriers, respectively. The kinetic of the polymerization in both environments was studied by means of a photo‐differential scanning calorimetry. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1500–1507  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号