首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001  相似文献   

2.
The in situ microfibrillar blend of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) was fabricated through a slit die extrusion, hot stretch, and quenching process. The morphological observation indicates that while the unstretched blend appears to be a common incompatible morphology, the hot stretched blends present PET in situ fibers whose characteristics, such as diameter and aspect ratio, are dependent on the hot stretching ratio (HSR). When the HSR is low, the elongated dispersed phase particles are not uniform at all. As the HSR is increased to 16.1, well‐defined PET microfibers were generated in situ, whose diameter is rather uniform and is around 0.6 ~ 0.9 μm. The presence of the PET phase shows significant nucleation ability for crystallization of iPP. Higher HSR corresponds to faster crystallization of the iPP matrix, while as HSR is high up to a certain level, its variation has little influence on the onset and maximum crystallization temperatures of the iPP matrix during cooling from melt. Optical microscopy observation reveals that transcrystalline layers form in the microfibrillar blend, in which the PET microfibers play as the center row nuclei. In the as‐stretched microfibrillar blends, small‐angle X‐ray scattering measurements show that matrix iPP lamellar crystals have the same orientation as PET lamella. The long period of lamellar crystals of iPP is not affected by the presence of PET micofibers. Wide‐angle X‐ray scattering reveals that the β phase of iPP is obtained in the as‐stretched blends, whose concentration increases with the increase of the HSR. This suggests that finer PET microfibers can promote the occurrence of the β phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4095–4106, 2004  相似文献   

3.
In this article, a review of recent literature on confined crystallization within nanoporous anodic aluminum oxide (AAO) templates is presented. For almost all infiltrated polymeric materials, crystal orientation within the nanopores is a function of pore diameter. Tc and Tm usually decrease and are a function of pore size. When no pore interconnection remains, the crystallization occur at large supercoolings in heterogeneity free environments. Hence, the nucleation mechanism changes from heterogeneous to surface or homogeneous nucleation. The crystallization kinetics of infiltrated polymers should be close to first order, since in confined environments nucleation is the determining step of the overall crystallization and Avrami indexes (n) of ~1 (or lower in some cases) should be obtained. Examples are provided where these conditions have been met and first order kinetics (n = 1) were measured as opposed to higher orders (n = 3?4) for the same polymer in the bulk. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1179–1194  相似文献   

4.
Nucleation of isotactic polypropylene (iPP) crystallization by gold (Au) nanoparticles was studied. Regardless of their size, 4.3, 8.8, 28.3, and 84.5 nm, all particles were able to nucleate spherulites when deposited on the iPP surface. However, when added and melt‐mixed with iPP, only the smallest particles affected significantly the iPP bulk crystallization. Au nanoparticles larger than 4.3 nm, at the concentration of 0.001 wt %, did not influence the crystallization of iPP. Contrary to this, 0.001 and 0.005 wt % of Au nanoparticles having the size of 4.3 nm increased crystallization temperature of the iPP by 7–8 °C and decreased markedly the sizes of polycrystalline aggregates. Aggregation of Au nanoparticles in the polymer matrix was evidenced by electron microscopy and contributed to their decreased effectiveness in the nucleation of iPP crystallization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 469–478, 2010  相似文献   

5.
Control of the crystallization of conjugated polymers is of critical importance to the performance of organic electronics, such as organic photovoltaic devices, due to the effect on charge separation and transport, particularly for all‐polymer devices. The block copolymer poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF), which has matched crystallization temperatures for each block, is used to study the effects of processing history on resulting crystallization. For longer annealing times and rapid quenching to room temperature, P3DDT crystals are preferred whereas for shorter annealing times and slower quenching, PF crystals are preferred. Both crystal forms are evidenced for long annealing time and slow quenching. Additionally, for room temperature annealing in the presence of a chloroform vapor, PF crystals are found in the PF β phase with the predominant crystal peak oriented perpendicular to the thermally annealed case. These results will provide guidance for optimizing annealing strategies for future donor/acceptor block copolymer photovoltaic devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 900–906  相似文献   

6.
The structure–property relationships of isotactic polypropylene (iPP)/styrenic block copolymer blends filled with talc were examined by optical and scanning electron microscopy, wide‐angle X‐ray diffraction, and tensile‐ and impact strength measurements. The composites were analyzed as a function of the poly(styrene‐b‐ethylene‐co‐propylene) diblock copolymer (SEP) and the poly(styrene‐b‐butadiene‐b‐styrene) triblock copolymer (SBS) content in the range from 0 to 20 vol % as elastomeric components and with 12 vol % of aminosilane surface‐treated talc as a filler. Talc crystals incorporated in the iPP matrix accommodated mostly plane‐parallel to the surface of the samples and strongly affected the crystallization process of the iPP matrix. The SBS block copolymer disoriented plane‐parallel talc crystals more significantly than the SEP block copolymer. The mechanical properties depended on the final phase morphology of the investigated iPP blends and composites and supermolecular structure of the iPP matrix because of the interactivity between their components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1255–1264, 2004  相似文献   

7.
The morphological structure and crystallization behavior of in situ poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) microparts prepared through micro‐injection molding are investigated using a polarized light microscope, differential scanning calorimeter, scanning electron microscope, and two‐dimensional wide‐angle X‐ray. Results indicate that both the shear effect and addition of PET fibers greatly influence the morphologies of the iPP matrix. Typical “skin‐core” and oriented crystalline structures (shish‐kebab) may simultaneously be observed in neat iPP and iPP/PET microparts. The presence of PET phases reveals significant nucleation ability for iPP crystallization. High concentrations of PET phases, especially long PET fibers, correspond to rapid crystallization of the iPP matrix. The occurrence of PET microfibrils decreases the content and size of β‐crystals; by contrast, the orientation degree of β‐crystals increases with increasing PET content in the microparts. This result suggests that the existence of the microfibrillar network can retain the ordered clusters and promote the development of oriented crystalline structures to some extent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The effect of CO2 on the nonisothermal crystallization of isotactic polypropylene (iPP) was studied with high‐pressure differential scanning calorimetry at cooling rates of 0.2–5 °C/min. CO2 significantly delayed the melt crystallization of iPP, and both the crystallization temperature and the heat of crystallization decreased with increasing CO2 pressure. The crystallization rate of iPP, as characterized by the half‐time, was also prolonged by the presence of CO2. With a modified Ozawa model developed by Seo, the Avrami crystallization exponent n of iPP was calculated. This value was depressed by the addition of CO2 and was strongly dependent on the CO2 pressure at low cooling rates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1518–1525, 2003  相似文献   

9.
Although under normal conditions only the crystallization behavior of PE on oriented iPP substrates can be studied due to the higher melting point of iPP, the faster crystallization rate of a molten, oriented HDPE film compared to a nonoriented iPP layer was used to study the crystallization of iPP on the oriented HDPE film by means of transmission electron microscopy (TEM) and electron diffraction (ED). Besides the known epitaxial relationship of HDPE/iPP with their chains 50° apart, two new orientation relationships with (a) chains of both polymers parallel and (hk0)iPP in contact with the HDPE substrate, and (b) the a‐axis of iPP crystals parallel to the chain direction of HDPE but (001)iPP in contact with the HDPE substrate were observed. Both orientations are assumed as graphoepitaxy. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1893–1898, 1999  相似文献   

10.
Sodium 2,2′‐methylene‐bis(4,6‐di‐tert‐butylphenyl) phosphate (NA40) and N,N‐dicyclohexylterephthalamide (NABW) are high effective nucleating agents for inducing the formation of α‐isotactic polypropylene (α‐iPP) and β‐iPP, respectively. The isothermal crystallization kinetics of iPP nucleated with nucleating agents NABW, NA40/NABW (weight ratio of NA40 to NABW is 1:1) and NA40 were investigated by differential scanning calorimetry (DSC) and Avrami equation was adopted to analyze the experimental data. The results show that the addition of NABW, NA40/NABW and NA40 can shorten crystallization half‐time (t1/2) and increase crystallization rate of iPP greatly. In these three nucleating agents, the α nucleating agent NA40 can shorten t1/2 of iPP by the largest extent, which indicates that it has the best nucleation effect. While iPP nucleated with NA40/NABW compounding nucleating agents has shorter t1/2 than iPP nucleated with NABW. The Avrami exponents of iPP and nucleated iPP are close to 3.0, which indicates that the addition of nucleating agents doesn't change the crystallization growth patterns of iPP under isothermal conditions and the crystal growth is heterogeneous three‐dimensional spherulitic growth. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 590–596, 2007  相似文献   

11.
The crystallization behaviors of isotactic polypropylene (iPP) and its blends with thermoelastomers have been investigated with in situ X‐ray scattering and optic microscopy. At quiescent condition, the crystallization kinetics of iPP is not affected by the presence of elastomers; while determined by the viscosity, the differences are observed on sheared samples. With a fixed shear strain, the crystallization rate increases with increasing the shear rate. The fraction of oriented lamellar crystals in blends is higher than that in pure iPP sample, while the percentage of β phase is reduced by the presence of the elastomers. On the basis of experimental results, no direct correlation among the fraction of oriented lamellae, the percentage of β phase, and growth rate can be deduced. The evolution of the fraction of oriented lamellae supports that shear field promotes nucleation rather than growth process. Shear flow induces the formation of nuclei not only with preferring orientation but also with random orientation. The total density of nuclei, which determines the crystallization kinetics, does not control the ratio between nuclei with and without preferring orientation, which determines the fraction of oriented lamellae. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1188–1198, 2006  相似文献   

12.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

13.
The effect of uniaxial deformation and subsequent relaxation at ambient temperature on irreversible and reversible crystallization of homogeneous poly(ethylene‐co‐1‐octene) with 38 mol % 1‐octene melt‐crystallized at 10 K min was explored by calorimetry, X‐ray scattering, and Fourier transform infrared spectroscopy. At 298 K, the enthalpy‐based crystallinity of annealed specimens increased irreversibly by stress‐induced crystallization from initially 15% to a maximum of, at least, 19% when a permanent set of more than 200% was attained. The crystallinity increased by formation of crystals of pseudohexagonal structure at the expense of the amorphous polymer, and as a result of destruction of orthorhombic crystals. The stress‐induced increase of crystallinity was accompanied by an increase in the apparent specific heat capacity from 2.44 to about 2.59 J g?1 K?1, which corresponds to an increase of the total reversibility of crystallization from, at least, 0.10 to 0.17% K?1. The specific reversibility calculated for 100% crystallinity increased from 0.67 to 0.89% K?1 and points to a changed local equilibrium at the interface between the crystal and amorphous phases. The deformation resulted in typical changes of the phase structure and crystal morphology that involve orientation and destruction of crystals as well as the formation of fibrils. The effect of the decrease of the entropy of the strained melt on the reversibility of crystallization and melting is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1223–1235, 2002  相似文献   

14.
Compounds of isotactic polypropylene (iPP) and β‐nucleating agent were used to investigate the relationship between the development of β phase and molecular weight in iPP under quiescent crystallization conditions by using wide angle X‐ray diffraction and differential scanning calorimetry techniques. In all cases, the dependency of the formation of β phase in iPP on molecular weight of iPP at a defined crystallization temperature range was found. The iPP with high molecular weight possessed a wide range of crystallization temperature in inducing rich β phase. However, poor or even no β phase was obtained for the samples with low molecular weight in the same range. In addition, an upper critical crystallization temperature of producing dominant β phase was found at 125 °C. Beyond this temperature, a phenomenon of prevailing α phase became obvious. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1301–1308  相似文献   

15.
Several blends, covering the entire range of compositions, of a metallocenic ethylene‐1‐octene copolymer (CEO) with a multiphasic block copolymer, propylene‐b‐(ethylene‐co‐propylene) (CPE) [composed of semicrystalline isotactic polypropylene (iPP) and amorphous ethylene‐co‐propylene segments], have been prepared and analyzed by differential scanning calorimetry, X‐ray diffraction, optical microscopy, stress‐strain and microhardness measurements, and dynamic mechanical thermal analysis. The results show that for high CEO contents, the crystallization of the iPP component is inhibited and slowed down in such a way that it crystallizes at much lower temperatures, simultaneously with the crystallization of the CEO crystals. The mechanical results suggest very clearly the toughening effect of CEO as its content increases in the blends, although it is accompanied by a decrease in stiffness. The analysis of the viscoelastic relaxations displays, first, the glass transition of the amorphous blocks of CPE appearing at around 223 K, which is responsible for the initial toughening of the plain CPE copolymer in relation to iPP homopolymer. Moreover, the additional toughening due to the addition of CEO in the blends is explained by the presence of the β relaxation of CEO that appears at about 223 K. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1869–1880, 2002  相似文献   

16.
Poly(tert butyl acrylate) (PTBA) is found to exhibit enhanced mobility when spun cast into thin films or impregnated into cylindrical anodic aluminum oxide (AAO) nanoscale pores. In a thin film configuration, the glass transition temperature of 20 nm thick PTBA is found to decrease almost 20 °C compared to the bulk. Consistent with this mobility increase, an increased volume fraction of interphase polymer leads to at least a 2.4 times viscosity reduction when PTBA is impregnated in 100 nm pores versus 200 nm pores. Such increases in mobility result in a 15‐fold increase in CO2 permeability for an AAO confined geometry compared to a bulk film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 434–441, 2010  相似文献   

17.
Random THV terpolymers consisting of tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF) are viable alternatives to polytetrafluoroethylene (PTFE) combining excellent chemical stability and thermoplastic processability. Although the properties of THV may be modified by crystallization, little is known on how crystallization is influenced by the chain microstructure of THV. We analyzed the chain microstructure of THV‐221G by solid‐state 19F NMR spectroscopy under fast magic angle spinning, revealing that THV‐221G contains 43.8 mol % TFE, 46.0 mol % VDF, and 10.2 mol % HFP. Sequence analysis revealed that the TFE units are preferentially located next to other TFE units. The HFP units, which are obstacles to crystallization because of their bulky CF3 side groups, are preferentially located next to VDF units. WAXS measurements correspondingly revealed the presence of THV‐221G crystals with PTFE‐like packing and of further THV‐221G crystal populations with widened d‐spacings caused by the incorporation of certain amounts of HFP units into the THV‐221G crystals. Under confinement imposed by the cylindrical nanopores of self‐ordered alumina, the THV‐221G melting point decreased with decreasing pore diameter. Although direct impingement of the growing THV‐221G crystals on the pore walls is unlikely, the geometric confinement limits the access of growing THV‐221G crystals to crystallizable THV‐221G chain segments. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1402–1408  相似文献   

18.
The nonisothermal crystallization of multiwall carbon nanotube (MWNT)/isotactic polypropylene (iPP) nanocomposites was investigated. The results derived from the differential scanning calorimetry curves (onset temperature, melting point, supercooling, peak temperature, half‐time of crystallization, and enthalpy of crystallization) were compared with those of neat iPP. The data were also processed according to Ozawa's theory and Dobreva's approach. These results and X‐ray diffraction data showed that the MWNTs acted as α‐nucleating agents in iPP. Accordingly, MWNT/iPP was significantly different from neat iPP: A fibrillar morphology was observed instead of the usual spherulites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 520–527, 2003  相似文献   

19.
The influence of low contents of a liquid crystalline polymer on the crystallization and melting behavior of isotactic polypropylene (iPP) was investigated using electron and optical microscopy, differential scanning calorimetry, and X-ray diffraction. In pure iPP, the α modification was found, whereas for iPP/Vectra blends at Vectra concentration <5%, both α and β forms were observed. The amount of β phase varied from 0.23 to 0.16. Optical microscopy showed that Vectra was able to nucleate both α and β forms. Non-isothermal crystallization produces a material with a strong tendency for recrystallization of the α and β forms (αα′ and ββ′ recrystallization) leading to double endotherms for both crystalline forms in DSC thermograms. Melting thermograms after isothermal crystallization at low temperatures showed a similar behavior. At values of Tc > 119 °C for the α form and Tc > 125 °C for the β form, only one melting endotherm was observed because enough perfect crystals, not susceptible to recrystallization, were obtained. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1949–1959, 2004  相似文献   

20.
The effects of the polymer concentration and quenching temperature on the phase separation, the membrane morphology and polymer crystallization behavior in a poly(4‐methyl‐1‐pentene) (TPX)‐dioctylsebacate (DOS)‐dimethylphthalate (DMP) system via thermally induced phase separation were studied with a pseudobinary phase diagram, with the weight ratio of DOS:DMP = 1:1. SEM was used to observe the membrane morphology and structure, whereas the TPX crystallization behavior was studied with DSC and WAXD. Liquid‐liquid phase separation occurred, although quenching under the crystallization temperature. As the quenching temperature decreased, the pore size decreased, with better connected pore structure formed. The membranes quenched at 333 and 363 K showed good cellular structures, with an average pore size of about 2.3μm, whereas the pores of the membranes quenched at 393 and 423 K were not well formed, with some lamellar crystals on the inner side. The diluent assisted the mobility of the polymer chain, which improved the polymer crystallization. Dual‐melting‐peak behavior occurred for all the samples studied here. As the quenching temperature increased, the first peak of the melting trace moved to a higher temperature, whereas the second one stayed almost the same. The flexibility of the TPX main chain was restricted by the side groups, which allowed liquid‐liquid phase separation to occur first when quenched below the equilibrium crystallization temperature. This allowed primary and secondary crystallization, which was responsible for the dual‐melting‐peak behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 153–161, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号