首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

2.
Well‐defined polyurethane–polydimethylsiloxane particles of tunable diameter in the range of 0.5–20 μm were synthesized in “one‐shot” by step‐growth polymerization using supercritical carbon dioxide (scCO2) as a dispersant medium. Polymerizations were carried out at 60 °C and above 25 MPa, after the solubility of each reactant in scCO2 has been determined in its typical reaction concentration. The synthesis of such copolymers was achieved by polyaddition between short aliphatic diols, that is, ethylene glycol, 1,4‐butanediol (BD) or polyethylene oxide (Mn = 200 g mol?1), and tolylene‐1,4‐di‐isocyanate (TDI) in the presence of mono or di‐isocyanate‐terminated polydimethylsiloxane (PDMS) as reactive stabilizers and dibutyltin dilaurate as a catalyst. The nature of the diol used as well as the functionality of the reactive stabilizer incorporated was found to have a dramatic effect on the molar mass and the morphology of the resulting product. Thus, copolymers obtained from the polyaddition of BD and TDI in the presence of di‐isocyanate‐terminated PDMS exhibit molar mass up to 90,000 g mol?1. Thermal behaviors of copolymers were also examined by differential scanning calorimetry. All samples exhibited only one glass transition temperature (Tg) and were found to be totally amorphous. A logical decrease of the Tg was observed as the length of the diol incorporated increased, that is, as the density of urethane linkages within the polymer decreased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5649–5661, 2007  相似文献   

3.
Crosslinking copolymerization of butyl methacrylate with a small amount of divinylbenzene (DVB) was carried out using single‐electron transfer‐living radical polymerization initiated with carbon tetrachloride (CCl4) and catalyzed by Cu(0)/N‐ligand in N,N‐dimethylformamide to produce a highly oil‐absorbing gel. The polymerization, gelation process, and oil‐absorbing properties were studied in detail. Analysis of monomer conversion with reaction time showed that the polymerization followed first‐order kinetics for both linear and crosslinking polymerization before gelation. Higher levels of DVB led to earlier gelation and the influence of N‐ligand on gelation was also significant. Under optimal conditions, oil absorption of the prepared gel to chloroform could reach 42.1 g·g?1. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3233–3239  相似文献   

4.
A new chiral half‐titanocene complex, [CpTiCl2(O‐(S)?2‐Bu)], is synthesized and characterized by 1H and 13C NMR spectroscopy. This complex is employed for the coordination polymerization of n‐butyl and n‐hexyl‐ isocyanate leading to chiral polymers, as revealed by their CD spectra. Only the left‐handed helix is produced, due to the chiral (S)?2‐butoxy group, which is bound to the polymer chain end. The polymerization of 3‐(triethoxysilyl)propyl isocyanate produces less soluble polymers. On the other hand, phenyl isocyanate reacts slowly with the complex leading quantitatively and selectively to triphenyl isocyanurate. 2‐Ethylhexyl isocyanate is slowly and selectively cyclotrimerized in the presence of the half‐titanocene complex. However, a statistical copolymer of 2‐ethylhexyl isocyanate and hexyl isocyanate is produced. The reaction of benzyl isocyanate with the complex leads to a mixture of low molecular weight polymer and cyclotrimer. The polymers are characterized using SEC, NMR, and CD spectroscopy and their thermal properties are investigated by TGA/DSC analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2141–2151  相似文献   

5.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106  相似文献   

6.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) having well‐defined polymer molecular weight (Mn = 7.5–21.1 kg·mol?1) and molecular weight distribution (PDI = 1.05–1.20) by a graft‐to method. Toluene solutions containing 5 wt % free PBLG and variable amounts of PBLG‐functionalized SWCNTs (PBLG‐SWCNTs) form gels at room temperature. Differential scanning calorimetry (DSC) analysis reveals that the gelation occurs thermoreversibly, in accord with previous studies on the pristine PBLG/toluene gels. The heat of gel melting (ΔHm) is slightly elevated for the composite gels compared with the pristine gel, which suggests enhanced interactions between PBLGs in the former. But the gelation temperatures of the composites are unaffected by the presence of PBLG‐SWCNTs. Small‐angle X‐ray scattering (SAXS) analysis of the composite and pristine gels at different temperatures by the Guinier method suggests that PBLG‐SWCNTs promote interactions between PBLG rods, as indicated by the larger PBLG bundle size with increasing PBLG‐SWCNT content in the gel and the melt state. W/SAXS analysis of the dry gels reveals that PBLG‐SWCNTs induce significant changes in the PBLG packing order, resulting in a nematic phase, in contrast to a weakly ordered smectic C phase containing tilted PBLG rods that is observed in the pristine gel. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Oleic acid and α,ω‐diacid were converted into propargylic esters followed by thiol‐ene/yne coupling (TEC/TYC) functionalization in presence of mercaptoethanol. The multiradical addition on fatty esters leads to the formation of lipidic polyols (OH1 and OH2), as judged by 1H NMR and mass spectroscopies as well as by size exclusion chromatography. The crosslinking reaction between TEC/TYC‐based polyols and 4,4′‐methylene bis(phenylisocyanate) isocyanate reactant was monitored by FTIR experiment and reaction parameters were optimized. By differential scanning calorimetry, relatively high glass transitions are measured corresponding to structure with little or without dangling chain. Moreover, the thermal stability of the resulting plant oil‐based polyurethane materials (PU1 and PU2) were found to be fully consistent with that of other lipidic PUs respecting a three‐step process. Thanks to TYC methodology, fatty α,ω‐diacid produces lipidic polyol without dangling chain and lipidic thermoset PU with relatively high Tg. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1597–1606  相似文献   

8.
This article describes the synthesis and characterization of new amphiphilic polymer conetworks containing hydrophilic poly(2,3‐dihydroxypropyl methacrylate) or poly(ethylene glycol) methacrylate (PEGMA) and hydrophobic polyisobutylene chains. This conetworks were prepared by a two‐step polymer synthesis. In the first step, a cationic copolymer of isobutylene and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) was prepared. The isocyanate groups of the IB‐IDI random copolymer were subsequently transformed in situ to methacrylate (MA) groups in reaction with 2‐hydroxyethyl methacrylate (HEMA). In the second step, the resulting MA‐multifunctional PIB‐based crosslinker, PIB(MA)n, with an average functionality of approximately four per chain, was copolymerized with 2,3‐dihydroxypropyl methacrylate or poly(ethylene glycol) methacrylate by radical mechanism in tetrahydrofuran giving rise to amphiphilic conetworks containing 11–60 mol % of DHPMA or 10–12 mol % of PEGMA. The synthesized conetworks were characterized with solid‐state 13C‐NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proved by swelling in both water and n‐heptane. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4074–4081, 2007  相似文献   

9.
In this study, a series of urea‐derivatives of 4‐aminopyridine (4AP) were evaluated as thermally latent initiators for the anionic ring‐opening polymerization of diglycidyl ether of bisphenol A (DGEBA). The urea‐derivatives were synthesized by the reactions of 4AP with the corresponding iso(thio)cyanates (phenyl isocyanate, tert‐butyl isocyanate, methylene diphenyl diisocyanate, and phenyl isothiocyanate). The ability of the urea‐derivatives as latent initiators was investigated with differential scanning calorimetry (DSC): Upon heating formulations comprised of DGEBA and the urea‐derivatives in a heating rate at 10 °C/min, the resulting DSC profiles indicated exothermic peaks to confirm that DGEBA underwent the polymerization efficiently. The corresponding DSC‐peak top temperatures (Tpeak top) was higher than that observed for the formulation comprised of DGEBA and pristine 4AP, to clarify that the urea are useful initiators with thermal latency. A possible mechanism for the initiation step involves the thermal dissociation of the urea into 4AP and the corresponding isocyanates. 4AP thus generated readily initiated the ring‐opening polymerization of epoxide. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2518–2522  相似文献   

10.
The small‐angle neutron scattering (SANS) and dynamic light scattering (DLS) investigation were carried out for organogels in toluene, formed by organogelators, to elucidate the relationship between the chemical structure and the gelation mechanism as well as the physical properties of the gels. Three different organogelators, that is cyclo(L ‐β‐3,7‐dimethyloctylasparaginyl‐L ‐phenylalanyl) (CPA), trans‐(1R,2R)‐bis(undecylcarbonylamino)cyclohexane (TCH), and Nε‐lauroyl‐Nα‐stearylaminocarbonyl‐L ‐lysine ethyl ester (LEE), were chosen for comparison. The SANS intensity functions of toluene solutions of these gelators could be reduced with the concentration and were described with a scattering function for thin rods. This indicates that the gels consist of noncorrelated, rod‐like elements aggregated to each other. The characteristic features of the gelation properties, such as the critical gelation concentration, Cgel, the gelation temperature, Tgel, the gel structure, and the gelation mechanism, were different from each other. CPA had the lowest Cgel and became a gel gradually as the temperature decreased, while TCH and LEE had higher Cgels and underwent a sharp sol–gel transition. We conclude that the gelation mechanisms between the CPA and TCH solutions are different. The “CPA type” gelators form a gel by a linear extension of hydrogen‐bonded plane, while the “TCH type” gelators form a twisted wire, because of its strong helicity and crystallizability. In addition, in the latter type, a next generation of fibrils easily stacks on top of the previous ones to form larger fibrils. These models well explain the DLS results and the mechanical properties. That is, the fibrillar stems in CPA gels are rather mobile and fragile, while those in TCH and LEE are frozen and brittle. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3567–3574, 2005  相似文献   

11.
A doubly hydrophilic triblock copolymer of poly(N,N‐dimethylamino‐2‐ethyl methacrylate)‐b‐Poly(ethylene glycol)‐b‐poly(N,N‐dimethylamino‐2‐ethylmethacrylate) (PDMAEMA‐b‐PEG‐b‐PDMAEMA) with well‐defined structure and narrow molecular weight distribution (Mw/Mn = 1.21) was synthesized in aqueous medium via atom transfer radical polymerization (ATRP) of N,N‐dimethylamino‐2‐ethylmethacrylate (DMAEMA) initiated by the PEG macroinitiator. The macroinitiator and triblock copolymer were characterized with 1H NMR and gel permeation chromatography (GPC). Fluorescence spectroscopy, dynamic light scattering (DSL), transmittance measurement, and rheological characterization were applied to investigate pH‐ and temperature‐induced micellization in the dilute solution of 1 mg/mL when pH > 13 and gelation in the concentrated solution of 25 wt % at pH = 14 and temperatures beyond 80 °C. The unimer of Rh = 3.7 ± 0.8 nm coexisted with micelle of Rh = 45.6 ± 6.5 nm at pH 14. Phase separation occurred in dilute aqueous solution of the triblock copolymer of 1 mg/mL at about 50 °C. Large aggregates with Rh = 300–450 nm were formed after phase separation, which became even larger as Rh = 750–1000 nm with increasing temperature. The gelation temperature determined by rheology measurement was about 80 °C at pH 14 for the 25 wt % aqueous solution of the triblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5869–5878, 2008  相似文献   

12.
Urethane reactions of cycloaliphatic and aromatic diisocyanates with hydroxy‐terminated fluoropolyethers (FPEs) of various molecular weights and structure, at NCO : OH = 2, have been studied by monitoring, by IR analysis, the rate of decrease in NCO absorbance at 2264–2268 cm−1. Different diisocyanates have been tested, among them the following: 4,4′‐dicyclohexylmethane diisocyanate (H12MDI); 5‐isocyanato‐1,3,3‐trimethylcyclohexylmethyl isocyanate or isophorone diisocyanate (IPDI); 2,4‐toluene diisocyanate (TDI). Ethyl acetate (EA), methyl isobutyl ketone (MIBK), and hexafluoroxylene (HFX) have been used as solvents in presence of dibutyltin dilaurate (DBTDL) or 1,4‐diazabicyclo[2.2.2]octane (DABCO) as catalysts. These reactions gave rise to NCO‐end‐capped FPE–oligourethanes. Preliminary solubility tests for HO‐terminated FPEs in various solvents made it possible to select proper candidates for carrying out reaction in homogeneous conditions at high concentrations of reagents (30–50% w/w). The second‐order kinetic mechanism was shown to be valid. Positive deviations from linearity for the second‐order kinetics around 40–80% conversion, found for most of the FPE diols, were attributed to the autocatalysis of the isocyanate–hydroxyl reaction by the arising urethane groups. Uncatalyzed reactions with cycloaliphatic diisocyanates are very slow at 40°C. The tertiary amine DABCO is a much less effective catalyst than DBTDL. FPEs having terminal OH groups separated from the perfluorinated main molecular chain by  (OCH2CH2)n segments (n = 1–2) are generally more reactive than FPEs with end  CH2OH groups. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 557–570, 1999  相似文献   

13.
When PEG (M.W.~5000 Daltons) is conjugated to poly(l ‐alanine), the polymer aqueous solutions (<10.0 wt.%) undergo sol‐to‐gel (thermal gelation), whereas it is conjugated to poly(l ‐lactic acid), the polymer aqueous solutions (>30.0 wt.%) undergo gel‐to‐sol (gel melting) as the temperature increases. In the search for molecular origins of such a quite different phase behavior, poly(ethylene glycol)‐poly(l ‐alanine) (PEG‐PA; EG113‐A12) and poly(ethylene glycol)‐poly(l ‐lactic acid) (PEG‐PLA; EG113‐LA12) are synthesized and their aqueous solution behavior is investigated. PEG‐PAs with an α‐helical core assemble into micelles with a broad size distribution, and the dehydration of PEG drives the aggregation of the micelles, leading to thermal gelation, whereas increased molecular motion of the PLA core overwhelms the partial dehydration of PEG, thus gel melting of the PEG‐PLA aqueous solutions occurs. The core‐rigidity of micelles must be one of the key factors in determining whether a polymer aqueous solution undergoes sol‐to‐gel or gel‐to‐sol transition, as the temperature increases. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, , 52, 2434–2441  相似文献   

14.
Well‐defined ω‐cholesteryl poly(n‐hexyl isocyanate) (PHIC–Chol), as well as diblock copolymers of n‐hexyl isocyanate (HIC) with styrene, PS‐b‐PHIC [PS = polystyrene; PHIC = poly(n‐hexyl isocyanate)], and triblock terpolymers with styrene and isoprene, PS‐b‐PI‐b‐PHIC and PI‐b‐PS‐b‐PHIC (PI = polyisoprene), were synthesized with CpTiCl2(OR) (R = cholesteryl group, PS, or PS‐b‐PI) complexes. The synthetic strategy involved the reaction of the precursor complex CpTiCl3 with cholesterol or the suitable ω‐hydroxy homopolymer or block copolymer, followed by the polymerization of HIC. The ω‐hydroxy polymers were prepared by the anionic polymerization of the corresponding monomers and the reaction of the living chains with ethylene oxide. The reaction sequence was monitored by size exclusion chromatography, and the final products were characterized by size exclusion chromatography (light scattering and refractive‐index detectors), nuclear magnetic resonance spectroscopy, and, in the case of PHIC–Chol, differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6503–6514, 2005  相似文献   

15.
The reaction between carbonyldiimidazole (CDI) and copper (II) nitrate produces a new Cu (II) complex with nitrate as the counter anion. TGA, UV, and FTIR analyses confirmed that the coordination number of CDI in this complex is two. The acceleration effect of the complex in epoxy‐dicyandiamide (DICY) curing systems has been evaluated by DSC and TMA, and the increasing viscosity of the mixture was monitored during the storage. The results revealed that the complex is not only very effective for the acceleration of epoxy‐DICY systems, leading to a rapid gelation within 21 min at 120 °C, but it is also chemically stable at ambient temperature. This is reflected by the slow increase of viscosity of the accelerated curing systems stored at 35 °C, even over 56 days. In addition, the effects of the [Cu(CDI)2]2+ complex with different counter anions, that is, bromide, chloride, nitrate, sulfate, phthalate, and acetate, were compared using a series of tests. By comparing with N,N‐dimethyl‐N′‐phenylurea (fenuron), the widely used latent accelerator for DICY‐epoxy curing systems, the complexes with bromide and nitride were found to be better, both regarding storage stability and for their acceleration effect. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3470–3476  相似文献   

16.
Polymerization of N‐(1‐phenylethylaminocarbonyl)methacrylamide (PEACMA) with dimethyl 2,2′‐azobisisobutyrate (MAIB) was kinetically studied in dimethyl sulfoxide (DMSO). The overall activation energy of the polymerization was estimated to be 84 kJ/mol. The initial polymerization rate (Rp) is given by Rp = k[MAIB]0.6[PEACMA]0.9 at 60 °C, being similar to that of the conventional radical polymerization. The polymerization system involved electron spin resonance (ESR) spectroscopically observable propagating poly(PEACMA) radical under the actual polymerization conditions. ESR‐determined rate constants of propagation and termination were 140 L/mol s and 3.4 × 104 L/mol s at 60 °C, respectively. The addition of LiCl accelerated the polymerization in N,N‐dimethylformamide but did not in DMSO. The copolymerization of PEACMA(M1) and styrene(M2) with MAIB in DMSO at 60 °C gave the following copolymerization parameters; r1 = 0.20, r2 = 0.51, Q1 = 0.59, and e1 = +0.70. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2013–2020, 2005  相似文献   

17.
A new accepter unit, dimethyl‐2H‐benzimidazole, was prepared and used for the synthesis of the conjugated polymers containing electron donor–acceptor pair for organic photovoltaics (OPVs). Dimethyl‐2H‐benzimidazole unit was designed to substitute the BT unit of poly(N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)) (PCDTBT). A series of new semiconducting polymers with 2,2‐dimethyl‐2H‐benzimidazole, 9‐heptadecanyl‐9H‐carbazole, and thiophene (or bithiophene) units was synthesized using Stille polymerization to generate PCDTMBIs (or PCBBTMBIs). In dimethyl‐2H‐benzimidazole, the sulfur at 2‐position of BT unit was replaced with dialkyl substituted carbon, while keeping the 1,2‐quinoid form, to improve the solubility of the polymers. The absorption spectra of PCDTMBIs with thiophene units exhibit two maximum peaks at about 430 and 613–645 nm in solution. The solutions of PCBBTMBIs show two absorption peaks at about 445–456 and 630–645 nm which is red‐shifted about 20 nm when compared with PCDTMBIs caused by the introduction of bithiophene units. In most efficient polymer PCBBTMBI3, the device annealed at 100 °C for 10 min demonstrated a VOC value of 0.60 V, a JSC value of 4.31 mA/cm2, and a FF of 0.35, leading to the power conversion efficiency (PCE) of 0.91%, under white light illumination (AM 1.5 G and 100 mW/cm2). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

19.
N,N′‐disubstituted hyperbranched polyureas with methyl, benzyl, and allyl substitutents were synthesized starting from AB2 monomers based on 3,5‐diamino benzoic acid. Carbonyl azide approach, which generates isocyanate group in situ on thermal decomposition, was used for the protection of isocyanate functional groups. The N‐substituted hyperbranched polymers can be considered as the new class of internally functionalized hyperbranched polyureas wherein the substituent can function either as receptor or as a chemical entity for selective transformations as a tool to tailor the properties. The chain‐ends were also modified by attaching long chain aliphatic groups to fully realize the interior functionalization. This approach opens up a possible synthetic route wherein different functional substituents can be used to generate a library of internally functionalized hyperbranched polymers. All the hyperbranched polyureas were characterized by FTIR, 1H‐NMR, DSC, TGA, and size exclusion chromatography. Degree of branching in these N,N′‐disubstituted hyperbranched polyureas, as calculated by 1H‐NMR spectroscopy using model compounds, was found to be lower than the unsubstituted hyperbranched polyurea and is attributed to the lower reactivity of N‐substituted amines compared to that of unsubstituted amines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5134–5145, 2004  相似文献   

20.
The aluminum complexes containing two iminophenolate ligands of the type (p‐XC6H4NCHC6H4O‐o)2AlR' (R′=Me ( 3, 4 ) or R′=O(CH2)4OCH=CH2 ( 5, 6 ), X=H ( 3, 5 ), F( 4, 6 )) were synthesized and characterized by 1H, 13C NMR spectroscopy, and X‐ray crystallography. The reaction of AlMe3 with two equivalents of substituted iminophenols gave five‐coordinated {ONR}2AlMe ( 3, 4 ) complexes. Subsequent reaction of these methyl complexes with unsaturated alcohol, HO(CH2)4OCH=CH2, resulted in target compounds 5 and 6 in a good yield. It was shown that the complexes ( 3 ‐ 6 ) are monomeric in solution (NMR) and in solid state (X‐ray analysis). The catalytic activity of the complexes 5 and 6 towards ring‐opening polymerization (ROP) of ?‐caprolactone and d,l ‐lactide was assessed. Complex 5 showed higher activity as compared with 6 , while both of these catalysts induced controlled homo‐ and copolymerization to afford the macromonomers with high content of vinyl ether end groups (Fn > 80%) in a broad range of molecular weights (Mn = 4000–30,000 g mol?1) with relatively narrow MWD (Mw/Mn = 1.1–1.5). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1237–1250  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号