首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conductive polymer (poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) is an attractive platform for the design of flexible electronic, optoelectronic, and (bio)sensor devices. Practical application of PEDOT:PSS often requires an incorporation of specific molecules or moieties for tailoring of its physical–chemical properties. In this article, a method for covalent modification of PEDOT:PSS using arenediazonium tosylates was proposed. The procedure includes two steps: chemisorption of diazo‐cations on the PEDOT:PSS surface followed by thermal decomposition of the diazonium salt and the covalent bond formation. Structural and surface properties of the samples were evaluated by XPS, SEM‐EDX, AFM, goniometry, and a range of electric and optical measurements. The developed modification procedure enables tuning of the PEDOT:PSS surface properties such as conductivity and optical absorption. The possibility to introduce various organic functional groups (from hydrophilic to hydrophobic) and to create new groups for further functionalization makes the developed procedure multipurpose. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 378–387  相似文献   

2.
Photolithographically patterned highly conductive (~1400 S/cm) poly(3,4‐ethylenedioxythio‐phene):poly(styrenesulfonate) (PEDOT:PSS) films are demonstrated as electrodes for organic light emitting diodes (OLEDs). With the assistance of hydrofluoroether (HFE) solvents and fluorinated photoresists, high‐resolution passive‐matrix OLEDs with PEDOT:PSS electrodes are fabricated, in which the OLEDs show comparable performance to those devices prepared on the indium tin oxide (ITO) electrodes. This photolithographic patterning process for PEDTO:PSS has great potential for applications which require flexible electrodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1221–1226  相似文献   

3.
The aim of this work has been to study the influence of modified hole‐extraction layers on the performance of organic solar cells (OSCs) based on blends of poly (3‐hexylthiophene) and [6,6]‐phenyl‐C61‐butyric acid methyl ester. The hole‐extraction layers consist of poly (3,4‐ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) doped with different concentrations of bromine. Compared with pristine OSC without adding bromine to the hole‐extraction layer, the bromine‐doped OSCs show a 49% increase in the power conversion efficiency (from 2.12 to 3.16%), which could be attributed to the increase of electrical and optical properties of PEDOT:PSS films after the addition of bromine. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 125–128, 2012  相似文献   

4.
A novel conjugated poly[(fluorene‐2,7‐vinylene)‐alt‐(1,4‐phenylenevinylene)] derivative 2 with quaternizable tertiary amino groups was synthesized by Heck coupling of a substituted 2,7‐dibromofluorene and 1,4‐dialkoxy‐2,5‐divinylbenzene. The corresponding quaternary ammonium cationic polyelectrolyte 3 was obtained by the treatment of 2 with bromoethane. Both polymers were soluble in common organic solvents, like tetrahydrofuran, chloroform, and dichloromethane. Polymer 3 showed a limited solubility in alcohols and was insoluble in water. Photophysical and electrochemical properties of the resulting polymers were fully investigated. An intensive green photoluminescence (PL) with maxima at 550 and 545 nm was observed from thin films of 2 and 3 polymers, respectively, red‐shifted compared with the PL emission spectra measured in the solution. The electrochemical band gaps were 2.38–2.45 eV. Single‐layer and double‐layer (with poly[3,4‐(ethylenedioxy)thiophene]/poly (styrenesulfonate) (PEDOT:PSS)) light‐emitting devices (LEDs) with ITO and Al electrodes were prepared and studied. They emitted a green light and their electroluminescence (EL) spectra were similar to those of PL thin films. The external EL efficiency was determined to be 0.43 and 0.32% for ITO/PEDOT:PSS/ 2 /Al and ITO/PEDOT:PSS/ 3 /Al LEDs, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1016–1027, 2007  相似文献   

5.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   

6.
A novel strategy via paper as an effective substrate has been introduced as a thermoelectric material in this work. Free‐standing poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/paper composite films are conveniently prepared by a one‐step method of directly writing PEDOT:PSS solution on paper, making the process simple, rapid, and facile. The free‐standing composite films display excellent flexibility, light weight, soaking stability in water, and great potential in large‐scale production. Improved thermoelectric properties are obtained in PEDOT:PSS/paper composite films, owing to the simultaneously enhanced Seebeck coefficient (30.6 μV K?1) and electrical conductivity, and a low thermal conductivity (0.16 W m?1 K?1) compared with pristine PEDOT:PSS films. The results indicate that paper as an effective substrate is suitable for the preparation of high‐performance and flexible thermoelectric materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 737–742  相似文献   

7.
We demonstrated a simple patterning method for the deposition of polymer electrodes such as poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS). We made use of the difference in wettability between hydrophobic surfaces and hydrophilic surfaces to make the patterns. However, the patterns made with our patterning method created undesirable ring‐like stains, which were caused by the outward flow of the solute within the PEDOT/PSS solution drop. To achieve homogenous device performance, we proposed a simple process for removing this ring‐like stain by making the surface tension gradient with dual solvent system in the PEDOT/PSS solution drop. Because this surface tension gradient causes the inward flow of the solute within the PEDOT/PSS solution drop, the ring‐like stain is removed. Finally, we confirmed the potential of our patterning method for polymer electrodes such as the PEDOT/PSS by fabricating pentacene thin‐film transistors (TFTs) and measuring the electrical properties of the pentacene TFTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1590–1596, 2011  相似文献   

8.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   

9.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

10.
Tang  Haoran  Liu  Zixian  Hu  Zhicheng  Liang  Yuanying  Huang  Fei  Cao  Yong 《中国科学:化学(英文版)》2020,63(6):802-809
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS) is one of the most widely used hole transporting materials in organic solar cells(OSCs). Multiple strategies have been adopted to improve the conductivity of PEDOT:PSS, however,effective strategy that can optimize the conductivity, work function, and surface energy simultaneously to reach a better energy alignment and interface contact is rare. Here, we demonstrate that oxoammonium salts(TEMPO~+X~-) with different counterions can act as facile and novel dopants to realize secondary doping of PEDOT:PSS. The effective charge transfer process achieved between TEMPO~+X~- and PEDOT:PSS results in enhanced carrier density and improved conductivity of PEDOT:PSS. Moreover,different counterions of TEMPO~+X~- can tune the work function and surface energy of PEDOT:PSS, enabling improved device performances. The resulting device with PM6:Y6 as the active layer shows a high power conversion efficiency(PCE) over 16%.Moreover, this doping strategy can also be applied to other conjugated polymers such as poly(3-hexylthiophene). This work provides a promising strategy to tune the properties of conjugated polymers through doping, thus effectively boosting the performance of organic solar cells.  相似文献   

11.
We have investigated the electrical transport properties of poly(3,4‐ethylenedioxythiophen)/poly(4‐styrene‐sulfonate) (PEDOT:PSS) with PEDOT‐to‐PSS ratios from 1:1 to 1:30. By combining impedance spectroscopy with thermoelectric measurements, we are able to independently determine the variation of electrical conductivity and charge carrier density with PSS content. We find the charge carrier density to be independent of the PSS content. Using a generalized effective media theory, we show that the electrical conductivity in PEDOT:PSS can be understood as percolation between sites of highly conducting PEDOT:PSS complexes with a conductivity of 2.3 (Ωcm)?1 in a matrix of excess PSS with a low conductivity of 10?3 (Ω cm)?1. In addition to the transport properties, the thermoelectric power factors and Seebeck coefficients have been determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
In this review, PEDOT–PSS is mainly a commercially available PEDOT–PSS, which is a water‐dispersible form of the intrinsically conducting PEDOT doped with the water‐soluble PSS, including its derivatives, copolymers, analogs (PEDOT:PSSs), even their composites via the chemical or physical modification toward the structure of PEDOT and/or PSS. First, we will focus on discussing the scientific importance of PEDOT–PSS in conjunction with its extraordinary properties and broad multidisciplinary applications in organic/polymeric electronics and optoelectronics from the viewpoint of the historical development and the promising application of representative ECPs. Subsequently, versatile film‐forming techniques for the preparation of PEDOT–PSS film electrode were described in details, including common coating approaches and printing techniques, and many emerging preparative methods were mentioned. Then challenges (e.g., conductivity, stability in Water, adhesion to substrate electrode) of PEDOT–PSS film electrode for devices under the high humidity/watery circumstances, especially electrochemical devices are discussed. Fourth, we take PEDOT–PSS film electrode for a relatively new application in sensors as an example, mainly summarized advances in the development of various sensors based on PEDOT–PSSs and their composites in combination with its preparative methods and extraordinary properties. Finally, we give the outlook of PEDOT–PSS for possible applications with the emphasis on PEDOT–PSS film electrode for electrochemical devices, including sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1121–1150  相似文献   

13.
Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive aqueous dispersion synthesized by using emulsion polymerization method. To further enhance its solution processability and conductivity of PEDOT derivatives, we proposed to replace the nonconductive PSS with conductive poly[2‐(3thienyl)‐ethoxy‐4‐butylsulfonate] (PTEB) as surfactant for the emulsion polymerization of PEDOT. The reaction involved colloid stabilization and doping in one step, and yielded PEDOT:PTEB composite nanoparticles with high electrical conductivity. Contrary to its counterpart containing nonconductive surfactant, PEDOT: PTEB showed increasing film conductivity with increasing PTEB concentration. The result demonstrates the formation of efficient electrical conduction network formed by the fully conductive latex nanoparticles. The addition of PTEB for EDOT polymerization significantly reduced the size of composite particles, formed stable spherical particles, enhanced thermal stability, crystallinity, and conductivity of PEDOT:PTEB composite. Evidence from UV–VIS and FTIR measurement showed that strong molecular interaction between PTEB and PEDOT resulted in the doping of PEDOT chains. X‐ray analysis further demonstrated that PTEB chains were intercalated in the layered crystal structure of PEDOT. The emulsion polymerization of EDOT using conducting surfactant, PTEB demonstrated the synergistic effect of PTEB on colloid stability and intercalation doping of PEDOT during polymerization resulting in significant conductivity improvement of PEDOT composite nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2536–2548, 2008  相似文献   

14.
15.
Indium tin oxide (ITO) is used as a substrate was covered with 4-[4-(4-methoxy-N-naphthalen-2-ylanilino) phenyl] benzoic acid (MNA) as a self-assembled monolayer (SAM). Poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) were mixed and used as a donor–acceptor in organic solar cell (OSC). The MNA (SAM) layer is used as an interface instead of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) for hole injection. The HOMO-LUMO energy level of MNA-SAM molecule and the electronic charge distribution were calculated theoretically using Chemissian software. The HOMO-LUMO energy level of the MNA is calculated as EHOMO = ?5.10 eV and ELUMO = ?1.60 eV. The OSC modified with MNA showed an efficient performance in the absence of PEDOT: PSS as hole transport layer. The annealing of the ITO/SAM/P3HT: PCBM films at different temperatures are also investigated to study the effect of reducing defects. The interface structures of the organic semiconductor layer on ITO were characterized by Atomic Force Microcopy (AFM). In addition, Kelvin Probe Microscopy (KPM) is used to understand how the annealing changes the surface potential energy of the ITO/SAM substrate. Using the KPM method, which measures the surface potential energy of the films, the energy bands of the ITO were increased to maximum 5.09 eV. The ITO/SAM/P3HT: PCBM film's surface potential was determined to be 0.18 eV after being annealed at 80 °C. The surface potential of the modified films was discovered to be 0.33 V and 0.39 V when the annealing temperature was raised from 80 °C to 120 °C and 160 °C. The maximum device efficiency was demonstrated by the ITO/SAM/P3HT: PCBM film after an hour of annealing at 160 °C.  相似文献   

16.
To deepen the understanding of morphology evolution in bulk heterojunction P3HT:PCBM organic photovoltaics system by thermal treatment, domain‐size‐dependent interfacial energies were first determined by coarse‐grained molecular dynamics modelling and then used in Monte Carlo simulations of the morphology evolution. Thereby initial conditions associated with optimal interfacial surface area, continuous volume, as well as domain sizes, and spatial distributions of the phase separated domains were identified. In line with earlier studies, a 1:1 P3HT:PCBM blend ratio is found to exhibit the most efficient morphology for exciton dissociation and charge transport. Our simulations reveal that preseeding of P3HT crystal at the anode side prior to the annealing process will be instrumental to pin the formation of P3HT at the favorable electrode especially when seeding exceeds a threshold of 10% surface coverage, whereas denser seeding patterns beyond the threshold did not improve the active layer morphology further. The observed trilayer depth profile (in the absence of preseeded P3HT crystals) implies that the commonly used thickness 100 nm of the active layer is not ideal for ensuring that donor and acceptor phases dominate at opposite ends of the active layer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 270–279  相似文献   

17.
研究了氧化石墨烯(GO)掺杂聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸) (PEDOT:PSS)作为空穴注入层对有机发光二极管发光性能的影响. 在PEDOT:PSS水溶液中掺入GO, 经过湿法旋涂和退火成膜后, 不仅提高了空穴注入层的空穴注入能力和导电率, 透光率也得到了相应的提高, 从而使得有机发光二极管(OLED)器件的发光性能得到了提升. 通过优化GO掺杂量发现, 当GO掺杂量为0.8%(质量分数)时, 空穴注入层的透光率达到最大值(96.8%), 此时获得的OLED器件性能最佳, 其最大发光亮度和最大发光效率分别达到17939 cd·m-2和3.74 cd·A-1. 与PEDOT:PSS 作为空穴注入层的器件相比, 掺杂GO后器件的最大发光亮度和最大发光效率分别提高了46.6%和67.6%.  相似文献   

18.
Recently, there has been significant research in the area of organic electrochemical transistors (OECTs) because of their superior aptitude of chemical and biological sensing. Here it is shown for the first time the incorporation of polymer brushes to a transistor. Polymer brushes were chosen for their biocompatible properties and their ability to covalently tether enzymes and other biomolecules to different surfaces. OECTs were fabricated from the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate), PEDOT:PSS, and polymerized from the surface a mixed polymer brush of poly(glycidyl methacrylate) and poly(2-hydroxyethyl methacrylate). The brushes were functionalized with glucose oxidase and measured in terms of electrical performance and long-term stability. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 372–377  相似文献   

19.
Planar organic electrochemical transistors (OECTs) using PEDOT:PSS as the channel material and nanostructured carbon (nsC) as the gate electrode material and poly(sodium 4‐styrenesulfonate (PSSNa) gel as the electrolyte were fabricated on flexible polyethylene terephthalate (Mylar®) substrates. The nsC was deposited at room‐temperature by supersonic cluster beam deposition (SCBD). Interestingly, the OECT acts as a hybrid supercapacitor (to give a device that we indicate as transcap). The energy storage ability of transcaps has been studied with two cell configurations: one featuring PEDOT:PSS as the positive electrode and nsC as the negative electrode and another configuration with reversed electrode polarity. Potentiostatic charge/discharge studies show that both supercapacitors show good performance in terms of voltage retention, in particular, when PEDOT:PSS is used as the positive electrode. Galvanostatic charge–discharge characteristics show typical symmetric triangular shape, indicating a nearly ideal capacitive behavior with a high columbic efficiency (close to 100%). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 96–103  相似文献   

20.
Novel conjugated copolymers based on 9,9‐dioctylfluorene and bisphenazine (BP) were synthesized by Suzuki polymerization. Energy transfer from the conjugated main chain to the BP moieties was observed. Full energy transfer was achieved when the molar content of the bisphenazine was 20% (20BPPF) in toluene solution. The similar phenomena were observed even for 1% bisphenazine content copolymer (1BPPF) in film. The lowest occupied molecular orbital (LUMO) energy levels (?3.06 eV) of the copolymers were lower than that of the polyfluorene homopolymer (PFO; ?2.65 eV), indicating that the introduction of the BP unit was benefit to electron injection. Single‐layer electroluminescent devices (ITO/PEDOT:PSS/polymer/LiF/Al) were fabricated to investigate their electroluminescence (EL) performances. The maximum brightness and current efficiency of all BPPF copolymers surpassed the PFO homopolymer. The best single‐layer device was based on 5BPPF, with a maximum brightness of 1532 cd/m2 and current efficiency of 1.09 cd/A. Much higher efficiency could be achieved for multilayer EL devices of 5BPPF (ITO/PEDOT:PSS/PVK/polymer/TPBI/LiF/Al), which showed a maximum current efficiency of 10.01 cd/A. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1990–1999, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号