首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase behaviors induced by solvent annealing in poly(methyl methacrylate) (PMMA) and poly(styrene‐ran‐acrylonitrile) (SAN) blend ultrathin films have been investigated by atomic force microscopy and grazing incidence small‐angle X‐ray scattering. Our results indicate that both the phase separation within the blend and the dewetting of the film induced by composition fluctuation take place upon the selective solvent annealing, producing complex structures containing upper droplets (of one phase) and mimic‐films (of the other rich‐phase). The use of acetic acid (the selective solvent for PMMA) generates PMMA mimic‐film and SAN droplets, while the introduction of DMF (exhibiting better solubility for SAN) vapor results in the formation of SAN mimic‐film and PMMA droplets. Essentially, the interaction at polymer/substrate interface, resultant wettability of selected component, solubility of PMMA and SAN in adopted solvent dominate not only the phase separation and the dewetting of the whole film but also the synergism of them. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1243–1251  相似文献   

2.
This article reports the results of an investigation into the time‐dependent morphological and rheological changes that accompany the in‐situ polymerization of blends composed of poly(hydroxyether of bisphenol A) (phenoxy) and poly(styrene‐co‐acrylonitrile) (SAN). The rheological behavior was monitored continuously during the in‐situ polymerization, whereas the miscibility and phase structure of blends formed in situ were examined at discrete stages of polymerization by differential scanning calorimetry and transmission electron microscopy. In the blend with 30 wt % SAN, a co‐continuous blend morphology was associated with gradual changes in the dynamic moduli, suggesting that phase separation proceeded by spinodal decomposition (SD). In contrast, phenoxy‐rich dispersions were uniformly dispersed in a continuous SAN‐rich matrix in the blend with 50 wt % SAN, and the corresponding rheological signature revealed a sharp initial increase in the dynamic moduli, followed by slower growth after long times, indicative of phase separation via nucleation and growth (NG). The rheological property changes are closely related to morphology development and mechanisms of phase separation induced duringin‐situ polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2614–2619, 2007  相似文献   

3.
The analysis of a thermoplastic polymer blend requires a precise separation of the blend components, which is usually performed by selective solvent extraction. However, when the components are high‐molecular‐weight polymers, a complete separation is very difficult. The use of fluids in near critical and supercritical conditions becomes a promising alternative to reach a much more precise separation. In this work, a method to separate reactive and physical blends from high‐molecular‐weight commercial polymers is proposed. Polyethylene (PE)/polystyrene (PS) blends were separated into their components with n‐propane, n‐pentane, and n‐heptane at near critical and supercritical conditions. The selectivity of each solvent was experimentally studied over a wide range of temperatures for assessing the processing windows for the separation of pure components. The entire PE phase was solubilized by n‐pentane and n‐heptane at similar temperatures, whereas propane at supercritical conditions could not dissolve the fraction of high‐molecular‐weight PE. The influence of the blend morphology and composition on the efficiency of the polymer separation was studied. In reactive blends, the in situ copolymer formed was solubilized with the PE phase by chemical affinity. The method proposed for blend separation is easy, rapid, and selective and seems to be a promising tool for blend separation, particularly for reactive blends, for which the isolation of the copolymer is essential for characterization © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2361–2369, 2005  相似文献   

4.
The effect of phase‐separated morphology on the rheological properties of polystyrene/poly(vinyl methyl ether) (PS/PVME) blend was investigated by optical microscopy (OM), light scattering (LS) method, and rheology. The blend had a lower critical solution temperature (LCST) of 112°C obtained by turbidity experiment using LS at a heating rate of 1°C/h. Three different blend compositions (critical 30/70 PS/PVME by weight) and two off‐critical (50/50 and 10/90)) were prepared. The rheological properties of each composition were monitored with phase‐separation time after a temperature jump from a homogeneous state to the preset phase‐separation temperature. For the 30/70 and 50/50 blends, it was found that with phase‐separation time, the storage and loss moduli (G′ and G″) increased at shorter times due to the formation of co‐continuous structures resulting from spinodal decomposition. Under small oscillatory shearing, shear moduli gradually decreased with time at longer phase‐separation times due to the alignment of co‐continuous structures toward the flow direction, as verified by scanning electron microscopy. However, for the 10/90 PS/PVME blend, the rheological properties did not change with phase‐separation times. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 889–906, 1999  相似文献   

5.
We developed thin films of blends of polystyrene (PS) with the thermoresponsive polymer poly(N‐isopropylacrylamide) (PNIPAM) (PS/PNIPAM) and its diblock copolymer polystyrene‐b‐poly(N‐isopropylacrylamide) (PS/PS‐b‐PNIPAM) in different blend ratios, and we study their surface morphology and thermoresponsive wetting behavior. The blends of PS/PNIPAM and PS/PS‐b‐PNIPAM are spin‐casted on flat silicon surfaces with various drying conditions. The surface morphology of the films depends on the blend ratio and the drying conditions. The PS/PS‐b‐PNIPAM films do not show an increase in their water contact angles with temperature, as it is expected by the presence of the PNIPAM block. All PS/PNIPAM films show an increase in the water contact angle above the lower critical solution temperature of PNIPAM, which depends on the ratio of PNIPAM in the blend and is insensitive to the drying conditions of the films. The difference between the wetting behavior of PS/PS‐b‐PNIPAM and PS/PNIPAM films is due to the arrangement of the PNIPAM chains in the film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 670–679  相似文献   

6.
Due to its simplicity and cost‐effectiveness, single solution casting of organic optoelectronics has grown in popularity for device fabrication to produce technologies such as organic photovoltaics and thin film transistors. In order to explore the structural evolution that occurs in the film formation of a blend composed of polystyrene and the benchmark conjugated polymer MEH‐PPV, we have performed a series of neutron reflectivity experiments focused on studying the film structure as it changes through the thermal annealing process both in the presence and absence of white light. Results indicate the formation of a nonhomogeneous blend upon casting, which becomes stratified with thermal annealing. More importantly, the extent of stratification varies with illumination, where exposure to white light increases stratification. This data suggests in situ illumination is a potential novel tool to manipulate device‐relevant morphologies of optoelectronic active layers throughout the fabrication process, offering a cheap nondestructive tool to effectively tune desired structural parameters. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1142–1149  相似文献   

7.
Significant effect of cellulose nanofibers (CNFs) on cure‐induced phase separation in dynamically asymmetric system is reported. An epoxy/polysulfone blends with typical layered structure formation was chosen as the polymer matrix, and morphology evolution and rheological behavior of systems with different nano‐size fiber loadings upon curing reaction were investigated using optical microscopy and rheological measurement. CNF distributed uniformly in the polymer matrix and had good interaction with polymer chains. Curing reaction of epoxy was promoted by CNF, making the system gel and phase separate earlier. Meanwhile, system viscosity was increased with CNF addition, and the movement of polymer chains and component diffusion were constrained, as a result, the structure evolution process was slowed down. The CNF altered the final morphologies, resulting in refined structures with smaller characteristic length scales or even completely change the morphologies from the layered structures to a bicontinuous structure when the CNF concentration reached to a relatively high level. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1357–1366  相似文献   

8.
A miscibility and phase behavior study was conducted on poly(ethylene glycol) (PEG)/poly(l ‐lactide‐ε‐caprolactone) (PLA‐co‐CL) blends. A single glass transition evolution was determined by differential scanning calorimetry initially suggesting a miscible system; however, the unusual Tg bias and subsequent morphological study conducted by polarized light optical microscopy (PLOM) and atomic force microscopy (AFM) evidenced a phase separated system for the whole range of blend compositions. PEG spherulites were found in all blends except for the PEG/PLA‐co‐CL 20/80 composition, with no interference of the comonomer in the melting point of PEG (Tm = 64 °C) and only a small one in crystallinity fraction (Xc = 80% vs. 70%). However, a clear continuous decrease in PEG spherulites growth rate (G) with increasing PLA‐co‐CL content was determined in the blends isothermally crystallized at 37 °C, G being 37 µm/min for the neat PEG and 12 µm/min for the 20 wt % PLA‐co‐CL blend. The kinetics interference in crystal growth rate of PEG suggests a diluting effect of the PLA‐co‐CL in the blends; further, PLOM and AFM provided unequivocal evidence of the interfering effect of PLA‐co‐CL on PEG crystal morphology, demonstrating imperfect crystallization in blends with interfibrillar location of the diluting amorphous component. Significantly, AFM images provided also evidence of amorphous phase separation between PEG and PLA‐co‐CL. A true Tg vs. composition diagram is proposed on the basis of the AFM analysis for phase separated PEG/PLA‐co‐CL blends revealing the existence of a second PLA‐co‐CL rich phase. According to the partial miscibility established by AFM analysis, PEG and PLA‐co‐CL rich phases, depending on blend composition, contain respectively an amount of the minority component leading to a system presenting, for every composition, two Tg's that are different of those of pure components. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 111–121  相似文献   

9.
Polymerization‐induced phase separation from an all‐monomeric system by direct copolymerization offers the formation of heterogeneous polymeric structures without reliance on polymer blends, block copolymers, or interpenetrating polymer networks. This study examines the potential for the formation of compositional heterogeneity in copolymer networks obtained by free‐radical photopolymerizations of initially homogeneous mixtures of bisphenol A glycidyl dimethacrylate and isodecyl methacrylate as the comonomer ratios and polymerization conditions are varied. Comonomer proportions that control thermodynamic stability prior to (as determined by cloud point measurements) and during [as determined by turbidity measurements coupled with near‐infrared (IR) spectroscopy] polymerization were shown to be a more influential factor on phase separation than irradiance‐imposed kinetic control of the photopolymerization process. Through photorheometry coupled with near‐IR and ultraviolet–visible (UV–Vis), the onset of phase separation was shown to occur at very low conversions and always prior to gelation (as estimated by the crossover of G′/G″). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1796–1806  相似文献   

10.
A truly miscible ternary miscible blend consisting of poly(?‐caprolactone) (PCL), poly(phenyl methacrylate), and poly(benzyl methacrylate) (PBzMA) was discovered. The three‐polymer blend system was completely miscible within the entire composition range at ambient temperature up to about 150 °C, and ternary phase diagrams at increasing temperatures were characterized and interpreted. A ternary‐interaction model based on the modified Flory–Huggins expression was used to describe the phase diagrams with the individual binary interaction strengths. The model fitted well with the experimental‐phase diagram for the ternary blend system at T = 250 °C, where the binary PCL‐PBzMA blend system is on the critical points of phase separation. Interpretation of discrepancy between the model and experimental at other temperatures was handled with an empirical approach. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 747–754, 2002  相似文献   

11.
With laser scanning confocal fluorescence microscopy, we demonstrate a novel type of morphology evolution in moderately thick films (70–100 μm) of ternary blends of polypropylene (PP), polyethylene (PE), and ethylene–propylene rubber (EPR), in which EPR is labeled with a benzothioxanthene dye (HY‐EPR). The blends are prepared by solution blending, and the phase morphology evolves during the annealing of the blend films in a stainless steel mold. Our results indicate that wetting of the mold surface is a driving force in morphology evolution for the two blend compositions investigated. For 81/14/5 PP/PE/HY‐EPR, phase evolution within the mold results in a laminar structure and hydrodynamic channels, features which have previously been found in thin films of polymer blends as a result of surface‐directed spinodal decomposition. In a blend with a lower weight fraction of the dispersed phase (92/7/1 PP/PE/HY‐EPR), we find that the PE/HY‐EPR domains are larger and more polydisperse closer to the surface because of wetting of the mold wall. We also show that the phase morphology in these films can be controlled by the nature of one or both of the surfaces being varied. When one of the mold surfaces is replaced with a thin film of PP homopolymer, we observe draining of PE/HY‐EPR from the PP to the mold surface, which results in a bilayer structure. A trilayer morphology is likewise obtained by the replacement of both mold surfaces with PP. We also carry out three‐dimensional image reconstruction on a single PE/HY‐EPR particle within the 81/14/5 PP/PE/HY‐EPR blend to obtain detailed information on the interphase structure. We find that HY‐EPR of this composition (30/70 ethylene/propylene) fully coats the PE dispersed phase and partially penetrates the PE droplets. This result falls between the interphase structures found for previously investigated EPR compositions (40/60 and 80/20 ethylene/propylene). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 637–654, 2003  相似文献   

12.
The phase‐separation kinetics of liquid‐crystalline polymer/flexible polymer blends was studied by the coupled time‐dependent Ginzberg–Landau equations for compositional order parameter ? and orientational order parameter Sij. The computer simulations of phase‐separated structures of the blends were performed by means of the cell dynamical system in two dimensions. The compositional ordering processes of phase separation are demonstrated by the time evolution of ?. The influence of orientational ordering on compositional ordering is discussed. The small‐angle light scattering patterns are numerically reproduced by means of the optical Fourier transformation of spatial variation of the polarizability tensor αij, and the azimuthal dependence of the scattering intensity distribution is interpreted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2915–2921, 2001  相似文献   

13.
Polymer blend technology has been one of the most investigated areas in polymer science in the past 3 decades. The one area of polymer blends that has been virtually ignored involves simple emulsion blends, although several articles have recently appeared that address film formation and mechanical characteristics. In this study, we investigated the mechanical property behavior of emulsion blends composed of low/high‐glass‐transition‐temperature polymers (where low and high mean below and above the test temperature, respectively). The emulsions chosen for this study had similar particle sizes, and the mixtures were rheologically stable. Two conditions were chosen, a binary combination of polymers that were thermodynamically immiscible and another system that was thermodynamically miscible. The mechanical property results over the entire composition range were compared with the predictions of the equivalent box model (EBM) with the universal parameters predicted by percolation theory. An array of randomly mixed and equal‐size particles of differing moduli was expected to show excellent agreement with theory, and the emulsion blends provided an excellent experimental basis for testing the theory. For the immiscible blend, the EBM prediction for the modulus showed excellent agreement with experimental results. With tensile strength, the agreement between the modulus and theory was good if the yield strength for the higher glass‐transition‐temperature polymer was employed in comparison with the actual tensile strength. The phase inversion point (where both phases were equally continuous) was at a 0.50 volume fraction of each component (based on an analysis employing Kerner's equation), just as expected for a random mixture of equal‐size particles. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1093–1106, 2001  相似文献   

14.
The phase separation of ultrathin polymer blend films of deuterated poly(styrene)/poly(vinylmethylether) leads to a variety of film morphologies, depending on polymer composition. Phase-separation measurements are made at a constant temperature difference from the critical temperature, leading to a bicontinuous spinodal decomposition pattern for near-critical blend compositions and to “mounds” and “holes” for PVME-rich and dPS-rich off-critical mixtures, respectively. Reverse temperature jumps of the phase-separated blend films into the one-phase region result in dissolution of the undulating surface patterns, confirming the phase-separation origin of the film patterns. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 191–200, 1998  相似文献   

15.
The ultrasonic properties of poly(N‐isopropyl acrylamide) (PNIPAM)/water solutions, determined with high‐resolution ultrasonic spectroscopy (HR‐US), change during demixing and remixing. All HR‐US measurements are discussed with respect to modulated temperature differential scanning calorimetry results. The lower critical solution temperature type of phase behavior, in combination with the glass‐transition/composition curve of PNIPAM/water, determines the evolution of the ultrasonic signals. Three different temperature regions can be distinguished: a homogeneous region and a heterogeneous region, the latter subdivided into zones without and with interference of partial vitrification of the PNIPAM‐rich phase. During phase separation, the ultrasonic velocity decreases because of a change in the hydration structure around the polymer chains, whereas the ultrasonic attenuation increases as aggregation sets in. Isothermal measurements clearly show time dependence for both the velocity and the attenuation. The observed timescales are different and can be related to a changing polymer/water interphase and aggregate formation, respectively. Partial vitrification of the PNIPAM‐rich phase slows the demixing kinetics and especially the remixing kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1283–1295, 2005  相似文献   

16.
It has been demonstrated that the 0‐0 absorption transition of poly(3‐hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid–liquid phase separation process during solution deposition. Pronounced J‐like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid–liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid–liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out‐set of semiconductor:insulator architectures of pre‐defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 304–310  相似文献   

17.
We present results of the direct observation, in real‐space, of the phase separation of high molecular weight polystyrene and poly(methyl methacrylate) from ortho‐xylene using our newly developed technique of high speed stroboscopic interference microscopy. Taking a fixed concentration (3 wt % in o‐xylene) at a fixed composition (1:4 by weight) and by varying the rotational rate during the spin‐coating process, we are able to observe the formation of a range of phase separated bicontinuous morphologies of differing length‐scales. Importantly, we are able to show that the mechanism by which the final phase separated structure is formed is through domain coarsening when rich in solvent, before vitrification occurs and fixes the phase separated structure. The ability to directly observe morphological development offers a route toward controlling the length‐scale of the final morphology through process control and in situ feedback, from a single stock solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B Polym. Phys. 2013, 51, 875–881  相似文献   

18.
Melt‐processable blends were prepared from rigid molecules of an ionically modified poly(p‐phenylene terephthalamide) (PPTA) and flexible‐coil molecules of poly(4‐vinylpyridine) (PVP). Dynamic mechanical analyses of blends with 50% or more of the ionic PPTA component revealed the presence of two distinct phases. The glass‐transition temperature of the more stable, ionic PPTA‐rich phase increased linearly with the ionic PPTA content. The second phase present in these blends was an ionic PPTA‐poor, or a PVP‐rich, phase. For this phase, a reasonably good fit of the data, showing the glass‐transition temperature as a function of the ionic PPTA content, was achieved between the results of this study and the reported results of previous investigation of molecular composites of the same two components with ionic PPTA contents of 15 wt % or less. The possible influence of annealing on the blend structure of a 90/10 blend of ionic PPTA and PVP was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1468–1475, 2003  相似文献   

19.
Two phenazine donor–acceptor‐conjugated copolymers (P1 and P2) with the same polymer backbone but different anchoring positions of alkoxy chain on the phenazine unit were investigated to identify the effect of changing the position of alkoxy chains on their optical, electrochemical, blend film morphology, and photovoltaic properties. Although the optical absorption and frontier orbital energy levels were insensitive to the position of alkoxy chains, the film morphologies and photovoltaic performances changed significantly. P1/PC71BM blend film showed the formation of phase separation with large coarse aggregates, whereas P2/PC71BM blend film was homogeneous and smooth. Accordingly, power conversion efficiency (PCE) of photovoltaic devices increased from 1.50% for P1 to 2.54% for P2. In addition, the PCE of the polymer solar cell based on P2/PC71BM blend film could be further improved to 3.49% by using solvent vapor annealing treatment. These results clearly revealed that tuning the side‐chain position could be an effective way to adjust the morphology of the active layer and the efficiency of the photovoltaic device. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2910–2918  相似文献   

20.
The effect of shear flow on the structure of a phase‐separated, near‐critical blend of 50/50 (w/w) poly(styrene‐ran‐butadiene) and polybutadiene was studied with two different custom‐built rheo‐optical instruments that combined polymer melt flow and small‐angle light scattering (SALS). The deformation of the phase domains during shear flow was nonaffine, and the SALS patterns evolved from a spinodal ring (SR) pattern to a squashed SR with two high‐intensity lobes, to an H‐pattern, to a butterfly pattern with a dark streak along the equator, and finally to a steady‐state, elliptical pattern. The SALS patterns were explained in terms of a network model, in which the strands of the network first orient in the flow direction, then extend in this direction, and finally break up into droplets aligned in the flow direction. According to this picture, the strands in the vorticity direction do not deform until relatively high strains, after which the periodicity of the network begins to disappear. Supporting this model was the observation that the transitions between the different SALS patterns corresponded to inflections and/or maxima in the shear stress or first normal stress difference. Increasing the shear rate changed the kinetics of the structure evolution and reduced the size of the phase‐separated droplets in the steady state. No evidence was obtained for flow‐induced miscibility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1725–1738, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号