首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and efficient pen‐on‐paper approach is designed to prepare hydrophilic surface enhanced Raman scattering (SERS)‐active lines by directly writing on a piece of hydrophobic poly (L‐lactic acid) nanofibrous paper using a pen filled with plasmonic nanoparticle ink. The pen‐on‐paper‐line SERS substrate exhibits hydrophobic–hydrophilic focusing effects together with negligible background interference, high sensitivity, good reproducibility, and long‐term stability. Furthermore, just by drawing three different plasmonic nanoparticles, the SERS activity is optimized for different molecules. Considering the complex factors involved in SERS effects of real analytes, our results provide an efficient strategy to produce optimized SERS substrates with multiple plasmonic nanoparticles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Substrates with complex and hierarchical nanostructure are widely investigated in surface‐enhanced Raman scattering (SERS), but it remains challenging to improve the structural uniformity and stability. Herein, a novel method is proposed: confined spheroidization. Unique configurations of hierarchical metallic nanoparticle arrays (HMNA) are successfully fabricated by confined spheroidizing on anodic aluminum oxide templates. By utilizing the confined effect of the holes, a series of large particles inside the hole and small particles arranged on the hole wall are obtained after thermal annealing. The size and distribution of nanoparticles strongly depend on the hole size, the thickness of the hole wall, and the deposition thickness of metal layer. COMSOL simulations demonstrate good SERS activity of the HMNA, with a low detection limit of ≈10?8 m for crystal violet (CV) and the enhancement factor of ≈ 4.97 × 107 at the 1160 cm?1 mode of CV. The relative standard deviation of 6.23% from 59 random spots and a 9.24% signal variation among ten substrates are achieved, showing good SERS signal reproducibility of the HMNA. This simple and low‐cost technique makes it possible to prepare 3D hierarchical ordered micro–nanostructures by one‐step, showing prospect applications in SERS‐based detection and plasmonic materials.  相似文献   

3.
We have first time demonstrated the construction of a plasmonic gold dimer model for bioassays based on immune recognition with surface‐enhanced Raman scattering (SERS). To induce a strong plasmonic coupling effect, a dimer of gold nanoparticles (NPs) with a Raman label located between adjacent NPs is assembled through specific recognition in biological systems. One promising application for this model is the provision of a new type of in situ self‐calibrated and reliable SERS platform where biotinylated molecules can selectively be trapped by streptavidin and placed in the gap enhanced plasmonic field, which may enable the development of powerful, biospecific recognition‐based SERS assays. The capabilities of the dimeric constructions for analytical applications were demonstrated through the use of the SERS technique to detect biotin at very low concentrations. Additionally, the spatial SERS radiation for the gold dimer assembled on the silicon slide was simulated using the finite‐difference time‐domain method; this simulation demonstrated the distribution of the electric field as well as the utility of the proposed system, thereby introducing potential uses of bio‐specific recognition as well as opportunities for the construction of plasmonically coupled nanostructures and bioassay applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A unique, geometry‐optimized, surface‐enhanced Raman scattering (SERS) fiber‐optic sensor has been recently developed and built. Though this class of sensors can be very useful in many applications, their use is greatly hindered by the fact that their reusability can hardly be achieved because of the irreversible adsorption of the analyte molecules on the SERS‐active substrate. Different substrates have been tested on our sensor with the purpose of increasing its reusability by means of cleaning procedures or good reproducibility in manufacturing the sensor, keeping, however, the same enhancement. We show that a partial reusability of the sensor is possible using SERS‐active substrates prepared by a standard process of immobilization of silver nanoparticles with 3‐aminopropyltrimethoxysilane. We also show that a fairly good reproducibility can be achieved with a low‐cost substrate realized in a short time by depositing a layer of polyvinyl alcohol (PVA) containing silver nanoparticles on the etched fiber tip. We prove as well that measurements are possible even with nanoparticles dispersed in the analyte solution instead of using a substrate directly made on the sensor tip. Finally, we have successfully tested our sensor with some molecules cited in EFSA (European Food Safety Authority) and FDA (Food and Drug Administration) reports as molecules for which new detection methods are necessary. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The dielectric property of a nanoparticle‐supporting film has recently garnered attention in the fabrication of plasmonic surfaces. A few studies have shown that the localized surface plasmon resonance (LSPR), and hence surface‐enhanced Raman scattering (SERS), strongly depends on the substrate refractive index. In order to create higher efficiency SERS‐active surfaces, it is therefore necessary to consider the substrate property along with nanoparticle morphology. However, due to certain limitations of conventional lithography, it is often not feasible to create well‐defined plasmonic nanoarrays on a substrate of interest. Here, an additive nanofabrication technique, i.e., nanotransfer printing (nTP), is implemented to integrate electron beam lithography (EBL) defined high‐aspect‐ratio nanofeatures on a variety of SERS‐supporting surfaces. With the aid of suitable surface chemistries, a wide range of plasmonic particles were successfully integrated on surfaces of three physically and chemically distinct dielectric materials, namely, polydimethyl siloxane (PDMS), SU‐8 photoresist, and glass surfaces, using silicon‐based relief pillars. These nTP‐created metal nanoparticles strongly amplify the Raman signal and complement the selection of suitable substrates for better SERS enhancement. Our experimental observations are also supported by theoretical calculations. The implementation of nTP to stamp out metal nanoparticles on a multitude conventional/unconventional substrates has novel applications in designing in‐built plasmonic microanalytical devices for SERS sensing and other related photonic studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Ag nanoparticles synthesized on porous silicon samples were studied and applied as substrates for surface‐enhanced Raman scattering (SERS). The metallic nanostructures prepared by immersion plating were characterized by UV–Vis reflectance spectroscopy and scanning electron microscopy. SERS activity of the substrates was tested using Cyanine dye 1,3,3,1′,3′,3′‐esamethyl‐5,5′‐dimethoxyindodicarbocyanine iodide (Cy5‐OCH3) as a probe molecule. The Raman spectra obtained for different excitation wavelengths indicate amplifications ascribed to plasmonic resonances with an enhancement factor up to 107. CGIYRLRS peptides were chemisorbed on the Ag nanoparticles with the plasmonic resonance tuned at the excitation energy. Such oligopeptides were used as baits for a specific polyclonal antibody. The overall Raman enhancement allowed to evidence a good selectivity to the target analyte as required by most of the SERS applications on biological assays. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A three‐dimensional surface‐enhanced Raman scattering (SERS) substrate via the self‐assembly of properly sized Au nanoparticles in anodic aluminum oxide templates was designed and prepared. Au nanoparticles first underwent hydrophobic surface modification. Then, the hydrophobic Au nanoparticles self‐assembled, aggregated and formed many hot spots in the anodic aluminum oxide templates through a supramolecular interaction. We chose thiophenol as a probe molecule to evaluate the SERS enhancement ability of this three‐dimensional substrate. The enhancement factor was calculated to be 4.6 × 106 under the radiation of a 785‐nm laser. By further comparing SERS signals from different points on the same substrate, we confirmed that this substrate possessed good reproducibility and could be applied for SERS detection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
We report the preparation of bifunctional silver–iron oxide composite nanostructures (Ag@Fe2O3) and demonstrate their magnetic separation with an analyte molecule from silver nanoparticles in a mixed solution. Magnetic and non‐magnetic plasmonic nanostructures and their separation are monitored by the surface‐enhanced Raman scattering (SERS) spectra of two different analytes attached to each kind of particles. In general, such separation experiments can provide insight into basic phenomena of adsorption and exchange of adsorbed molecules which are of strong interest in SERS. The formation of stable Ag@Fe2O3 nanoparticle–molecule complexes suggests small magnetic SERS labels without additional protective layers for application in analytical assays. The magnetic plasmonic nanostructures have great promise for targeted imaging and sensing in biological structures by directing nanosensors to places of interest using magnetic fields. The option of magnetic separation and collection of plasmonic particles improves the analytical capabilities of SERS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The development of rapid, highly sensitive detection methods for α‐fetoprotein (AFP) is very important. As hepatocellular carcinoma is closely related to the level of AFP in the blood, it is necessary to maintain an AFP concentration below the safety limit. In this paper, we propose a universal, rapid, sensitive, and highly specific immunoassay system utilizing gold nanoparticles (AuNPs) and surface‐enhanced Raman scattering (SERS). This new system features a sandwich structure combining mercaptobenzoic acid‐labeled immunogold nanoparticles with the antigen and the antibody atop a pre‐designed substrate made of a glass slide modified with AuNPs. This SERS‐based immunoassay can detect AFP concentrations as low as 100 pg/ml, which is a significant improvement on the capabilities of the enzyme‐linked immunosorbent assay method. A good linear relationship between the SERS peak intensity and the logarithm of antigen concentrations (from 1 ng/ml to 100 ng/ml) was observed. This technique provides an effective model for the detection of biomarkers in medical diagnostics, criminal investigation, and other fields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A simple fabrication method is demonstrated for surface‐enhanced Raman scattering (SERS)‐active plasmonic nanoballs, which consisted of Au nanoparticles (NPs) and core–shell polystyrene and amino‐terminated poly(butadiene) particles, by heterocoagulation and Au NP diffusion. The amount of Au NPs introduced into the core–shell particles increases with the concentration of Au NPs added to the aqueous dispersion of the core–shell particles. When the amount of Au NPs increases, closely packed, three‐dimensionally arranged and close‐packed Au NPs arrays are formed in the shells. Strong SERS signals from para‐mercaptophenol adsorbed onto composite particles with multilayered Au NPs arrays are obtained by near‐infrared (NIR) light illumination.  相似文献   

11.
To detect trace‐level polycyclic aromatic hydrocarbons, some investigations of an improved self‐assembly method are carried out using gold colloid films for the preparation of the surface‐enhanced Raman scattering (SERS)‐active substrate. Extinction spectra and scanning electron microscopy images reveal that controllable surface plasmonic metal substrates can be obtained by increasing the temperature of (3‐aminopropyl)trimethoxysilane solution up to 64.5 °C. The SERS‐active substrates have a high enhancement factor, and they can be both easily prepared and reproducible. With the use of these substrates, different concentrations of pyrene and anthracene in aqueous solutions were detected by SERS. A further enhancement can be supported by shifted excitation Raman difference spectroscopy. Raman signals of pyrene and anthracene adsorbed on gold colloid substrates up to limits of detection at 5 and 1 nmol/l, respectively, can be obtained. The quantitative analysis shows the possibility of in situ detection of polycyclic aromatic hydrocarbons while such gold colloid film serves as a SERS‐active substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Surface enhanced Raman scattering (SERS) of adsorbed molecule on colloidal gold nanoparticles of different shapes, namely nanospheres (NSs), nanorods (NRs), and nanoprisms (NPs) as well as the three NPs arrays of different interstice prepared by NS lithography, are studied with incident wavenumbers in the near‐dipole and near‐quadrpole regions of the nanoparticles. In the colloidal gold nanoparticles, the SERS enhancement is the largest for the sharp tip followed by the truncated tip NPs, then the NRs and least enhancement for the NSs. This decreasing order of enhancement occurs although the incident wavenumber was near the dipole resonance of NSs and the quadrupole resonance for the NPs. These varied enhancements are explained in part as due to the binding energies of the nanocrystal facets, but the larger contribution results from the plasmon electromagnetic fields. A parallel finite difference time domain (FDTD) calculations were carried out, which corporate the experimental results and show agreement with ratios of the SERS enhancement for the different shapes. The normalized SERS intensity for NPs of different interstice distances show a sharp rise with the decrease of the interstice distances because of interparticle dipolar and quadrupolar coupling as evidenced also by FDTD calculations. Furthermore, these calculations show that the enhancement is polarization independent for an incident wavelength near quadrupole resonance but polarization dependent for an incident wavelength near the plasmon dipole transition. In the last case, the enhancement is larger by an order of magnitude for a polarization parallel to the NPs bisector than for polarization normal to the bisector with no hot spots for the relatively large interstice dimensions used. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Chul Kim H  Cheng X 《Optics letters》2011,36(16):3082-3084
We numerically investigate the optical field enhancement based on gap surface plasmon polaritons (GSPPs) that are enhanced by propagating surface waves launched by a circular slit at a metal-dielectric interface. The optical field enhancement originates not only from multiple scattering and coupling of GSPPs in the spacer region between two metal layers but also from propagating surface plasmon polaritons (SPPs) launched by a circular plasmonic lens. We find that the combination of the GSPPs and the propagating SPPs launched by the plasmonic lens can achieve extremely strong field confinement, and we find that the surface-enhanced Raman scattering (SERS) enhancement factor can be up to 10(15) at the tip of the equilateral triangular nanostructures. The structure proposed here is expected to find promising applications where strong field enhancement is desired, such as optical sensing with the SERS effect.  相似文献   

14.
Adsorption of functional groups to the surface of plasmonic nanoparticles provides a platform for localised optical sensing. Over the past decade, nanoscale sensors for intracellular pH measurement based on surface‐enhanced Raman spectroscopy (SERS) have been developed. However, the approaches by which pH‐SERS measurements are made and analysed can greatly impact the precision and accuracy of pH calibration. To improve pH nanosensors, the sources of experimental variation must be determined and the data must be optimally analysed. Here we report the plasmon‐induced decarboxylation of para‐mercaptobenzoic acid (pMBA) pH reporters attached to gold nanoparticles and conclude a strong association with laser power. The detrimental decarboxylation of pMBA has profound implications on the sensitivity and reliability of the pH sensor. Decarboxylation spectral signatures map directly onto those that are typically used to record pH changes, and, hence, the greatest implication of decarboxylation of pH sensors is inaccurate or false pH reporting. Here a more robust spectral analysis for pH sensing based upon an optimal spectral region for pH calibration is presented together with a unique application of the multivariate statistical technique, principal component analysis (PCA). PCA interprets complex spectral dynamics, and by direct comparisons with the typically employed ratiometric analysis, a significant improvement in generating accurate pH sensing is demonstrated. An application of these methods in determining the pH of internalised nanosensors in macrophage cells further promotes these step changes in pH measurement methodology via the avoidance of disruptive spectral signatures that arise in real applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A method of applying giant stimulated electronic Raman scattering (SERS) by plasmonic gold nanoparticles for identification of inorganic microcrystals in the structure of works of art is presented. The high signal-to-noise ratio in the SERS spectra, along with the low luminescent background, makes the method promising for implementation in practice of technical expertise of objects of cultural heritage.  相似文献   

16.
Gelatin‐protected silver nanoparticles have been synthesized by a one‐pot, green method for surface‐enhanced Raman scattering (SERS) applications using gelatin as the reducing and stabilizing agent. The gelatin protection on silver nanoparticle surface helps improve its stability greatly and water dispersibility, while retaining high SERS activity of silver nanoparticles. The gelatin‐protected silver nanoparticles showed SERS signals as low as 100 nM of the typical Raman reporter molecules, RuBPY and R6G and 10 μM of other molecules of interest, melamine and folic acid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We report surface‐enhanced Raman studies on intact plant material using onion layers as a biological target, and silver nanoaggregates and silver island films as enhancing plasmonic structures. Surface‐enhanced Raman scattering (SERS) enhancement allows the detection of strong Raman signatures of chemical constituents of the surface of the onion layer such as cellulose, proteins, and flavonols. Because of long‐time incubation, SERS sensors can access the extracellular space in the inner of the layer. The location of silver nanoparticles inside the onion layer has been monitored by the SERS images collected from chemicals present in the onion and/or reporter molecules attached to the nanoparticles. Our studies show a competitive adsorption of intrinsic bio molecules of the onion layer and reporter molecules. Different spectra from different places of the layer indicate the complex heterogeneous chemical structure of the plant material. The pH‐sensitive reporter molecule para mercapto benzoic acid attached to the nanoparticles allows us to infer pH values inside the extracellular matrix of the onion layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We have examined the surface characteristics of Ag‐doped Au nanoparticles (below 5 mol% of Ag) by means of the surface‐enhanced Raman scattering (SERS) of 2,6‐dimethylphenylisocyanide (2,6‐DMPI) and 4‐nitrobenzenethiol (4‐NBT). When Ag was added to Au to form ∼35‐nm‐sized alloy nanoparticles, the surface plasmon resonance band was blue‐shifted linearly from 523 to 517 nm in proportion to the content of Ag up to 5%. In the SERS spectra of 2,6‐DMPI, the N‐C stretching peak also shifted almost linearly from 2184 to 2174 cm−1 when the Ag content was 5 mol% or less; the peak then remained the same as that of the pure Ag film. The potential variation of the SERS spectrum of 2,6‐DMPI in an electrochemical environment, as well as the effect of organic vapor, also showed a similar tendency. From the SERS of 4‐NBT, we confirmed the occurrence of a surface‐induced photoreaction converting 4‐NBT to 4‐aminobenzenethiol, when Ag was added to Au to form alloy nanoparticles. The photoreaction induction ability also increased linearly with the Ag content, reaching a plateau level at 5 mol% of Ag. All these observations suggest that the surface content of Ag should increase almost linearly as a function of the overall mole fraction of Ag and, once the Au/Ag nanoparticles reach 5 mol% of Ag, their surfaces are fully covered with Ag, showing the same surface characteristics of pure Ag nanoparticles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Nanoporous thin films with silver nanoparticles were synthesized with a bottom–up approach, and its potential as effective surface‐enhanced Raman scattering (SERS) substrates was demonstrated. The use of mesoporous titania films as substrates allowed to control the growth of nanoparticles on the film surface. Atomic force microscopy measurements, Ultraviolet‐visible and X‐ray diffraction analysis confirmed the photoreduction of Ag+ to Ag0 with the formation of nanoparticles with crystallite dimensions of 32 to 36 nm. The new substrates allowed the detection of two analytes (rhodamine B isothiocyanate and cytochrome c), present in solutions at very low concentrations, highlighting their potential in SERS sensing. Reproducibility, homogeneity, enhancement factor of the substrate, consistency of results and detection limits were also assessed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号