首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A novel kind of graft polymer poly(aspartic acid)‐ethanediamine‐g‐adamantane/methyloxy polyethylene glycol (Pasp‐EDA‐g‐Ad/mPEG) was designed and synthesized for drug delivery in this study. The chemical structure of the prepared polymer was confirmed by proton NMR. The obtained polymer can self‐assemble into micelles which were stable under a physiological environment and displayed pH‐ and β‐cyclodextrin (β‐CD)‐responsive behaviors because of the acid‐labile benzoic imine linkage and hydrophobic adamantine groups in the side chains of the polymer. The doxorubicin (Dox)‐loaded micelles showed a slow release under physiological conditions and a rapid release after exposure to weakly acidic or β‐CD environment. The in vitro cytotoxicity results suggested that the polymer was good at biocompatibility and could remain Dox biologically active. Hence, the Pasp‐EDA‐g‐Ad/mPEG micelles may be applied as promising controlled drug delivery system for hydrophobic antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1387–1395  相似文献   

2.
    
Well‐defined amphiphilic linear‐dendritic prodrugs (MPEG‐b‐PAMAM‐DOX) are synthesized by conjugating doxorubicin (DOX), to MPEG‐b‐PAMAM through the acid‐labile hydrazone bond. The amphiphilic prodrugs form self‐assembled nanoparticles in deionized water and encapsulate the hydrophobic anticancer drug 10‐hydroxycamptothecin (HCPT) with a high drug loading efficiency. Studies on drug release and cellular uptake of the co‐delivery system reveal that both drugs are released in a pH‐dependent manner and effectively taken up by MCF‐7 cells. In vitro methyl thiazolyl tetrazolium (MTT) assays and drug‐induced apoptosis tests demonstrate the HCPT‐loaded nanoparticles suppress cancer cell growth more efficiently than the MPEG‐b‐PAMAM‐DOX prodrugs, free HCPT, and physical mixtures of MPEG‐b‐PAMAM‐DOX and HCPT at equivalent DOX or HCPT doses.

  相似文献   


3.
4.
    
Biodegradable amphiphilic ABC Y‐shaped triblock copolymer (MPBC) containing PEG, PBLA, and PCL segments was synthesized via the combination of enzymatic ring‐opening polymerization (ROP) of epsilon‐caprolactone, ROP of BLA‐N‐carboxyanhydride and click chemistry, where PEG, PBLA, and PCL are poly(ethylene glycol), poly(benzyl‐l ‐aspartate), and polycaprolactone, respectively. Propynylamine was employed as ROP initiator for the preparation of alkynyl‐terminated PBLA and methyloxy‐PEG with hydroxyl and azide groups at the chain‐end was used as enzymatic ROP initiator for synthesis of monoazido‐midfunctionalized block copolymer mPEG‐b‐PCL. The subsequent click reaction led to the formation of Y‐shaped asymmetric heteroarm terpolymer MPBC. The polymer structures were characterized by different analyses. The MPBC terpolymer self‐assembled into micelles and physically encapsulated drug doxorubicin (DOX) to form DOX‐loaded micelles, which showed good stability and slow drug release. In vitro cytotoxicity study indicated that the MPBC micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3346–3355  相似文献   

5.
    
The synthesis of well‐defined diblock copolymers by atom transfer radical polymerization (ATRP) was explored in detail for the development of new colloidal carriers. The ATRP technique allowed the preparation of diblock copolymers of poly(ethylene glycol) (PEG) (number‐average molecular weight: 2000) and ionic or nonionizable hydrophobic segments. Using monofunctionalized PEG macroinitiator, ionizable and hydrophobic monomers were polymerized to obtain the diblock copolymers. This polymerization method provided good control over molecular weights and molecular weight distributions, with monomer conversions as high as 98%. Moreover, the copolymerization of hydrophobic and ionizable monomers using the PEG macroinitiator made it possible to modulate the physicochemical properties of the resulting polymers in solution. Depending on the length and nature of the hydrophobic segment, the nonionic copolymers could self‐assemble in water into nanoparticles or polymeric micelles. For example, the copolymers having a short hydrophobic block (5 < degree of polymerization < 9) formed polymeric micelles in aqueous solution, with an apparent critical association concentration between 2 and 20 mg/L. The interchain association of PEG‐based polymethacrylic acid derivatives was found to be pH‐dependent and occurred at low pH. The amphiphilic and nonionic copolymers could be suitable for the solubilization and delivery of water‐insoluble drugs, whereas the ionic diblock copolymers offer promising characteristics for the delivery of electrostatically charged compounds (e.g., DNA) through the formation of polyion complex micelles. Thus, ATRP represents a promising technique for the design of new multiblock copolymers in drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3861–3874, 2001  相似文献   

6.
    
Bioreducible and core‐crosslinked hybrid micelles were for the first time fabricated from biodegradable and biocompatible trimethoxysilyl‐terminated and disulfide‐bond‐linked block copolymers poly(ε‐caprolactone)‐S‐S‐poly(ethylene oxide), which were prepared by combining thiol‐ene coupling reaction and ring‐opening polymerization. The molecular structures, physicochemical, self‐assembly, and bioreducible properties of these copolymers were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering (DLS), and transmission electron microscopy. The core‐crosslinking sol‐gel reaction was confirmed by 1H NMR, and the core‐crosslinked hybrid micelles contained about 3 wt % of silica. The bioreducible property of both uncrosslinked and core‐crosslinked micelles in 10 mM 1,4‐dithiothreitol (DTT) solution was monitored by DLS, which demonstrated that the PEO corona gradually shedded from the PCL core. The anticancer doxorubicin drug‐loaded micelles showed nearly spherical morphology compared with blank micelles, presenting a DTT reduction‐triggered drug‐release profile at 37 °C. Notably, the core‐crosslinked hybrid micelles showed about twofold drug loading capacities and a half drug‐release rate compared with the uncross‐liked counterparts. This work provides a useful platform for the fabrication of bioreducible and core‐crosslinked hybrid micelles potential for anticancer drug delivery system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
8.
    
Poly(doxorubicin) (PDOX) is synthesized with Mn of 1.66 × 104 and DOX content of 78% as prodrug for tumor‐specific triggered release, via a facile condensation polymerization of DOX‐SS‐DOX and adipic dihydrazide. The PDOX nanoparticles (PDOX‐NPs) could completely release DOX‐SH within 1.5 days at the simulated tumor microenvironment, but no measurable leakage in the physiological media. The in vitro controlled release results show that the releasing rate is influenced by the dosage and independent of the particle size, while the solubility of the degraded products should be the main determining factor for the drug release from the PDOX‐NPs. The PDOX‐NPs are expected to be promising prodrug nanopharmaceutics for the on‐demand self‐delivery of DOX with enhanced anticancer efficacy in future tumor treatment.  相似文献   

9.
    
The development of thermo‐responsive and reduction‐sensitive polymeric micelles based on an amphiphilic block copolymer poly[(PEG‐MEMA)‐co‐(Boc‐Cyst‐MMAm)]‐block‐PEG (denoted PEG‐P‐SS‐HP) for the intracellular delivery of anticancer drugs is reported. PTX, as model drug, was loaded into the PEG‐P‐SS‐HP micelles with an encapsulation efficiency >90%, resulting in a high drug loading content (up to 35 wt%). The PTX‐loaded PEG‐P‐SS‐HP micelles show slow drug release in PBS and rapid release after incubation with DTT. The PTX‐loaded micelles display a better cytotoxic effect than the free drug, whereas empty micelles are found to be non‐toxic. The thermo‐responsive and reduction‐sensitive polymeric micelles described may serve as promising carriers for cytostatic drugs.

  相似文献   


10.
    
The preparation, characterization, release, and in vitro cytotoxicity of a biodegradable polymeric micellar formulation of paclictaxel (PTX) were investigated. The micelles based on thermosensitive and degradable amphiphilic polyaspartamide derivatives containing pendant aromatic structures (phe‐g‐PHPA‐g‐mPEG) were prepared by a quick heating method without using toxic organic solvent. Dynamic light‐scattering results show that the micelles are stable upon dilution under physiological conditions and the destabilization of the micelles is pH‐dependent and the phe‐g‐PHPA‐g‐mPEG polymers are biodegradable. PTX was loaded into the phe‐g‐PHPAs‐g‐mPEG micelles with encapsulation efficiency of >90%, resulting in a high drug loading content (up to 29%). PTX‐loaded micelles had a mean size around 70 nm with narrow size distribution (polydispersity index, <0.1). The PTX‐loaded micelles showed sustained drug release and obvious anticancer activity similar to Taxol against HepG2 cells, whereas blank micelles were nontoxic. The present results suggest that the thermosensitive and biodegradable phe‐g‐PHPA‐g‐mPEG micelles are a promising delivery system for the hydrophobic drugs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3917–3924  相似文献   

11.
    
Synthesis of a library of amphiphilic random copolymers from a single reactive pre‐polymer and their self‐assembly is reported. Post‐polymerization modifications of the parent polymer containing pendant N‐hydroxy succinimide (NHS) ester groups with various oligooxyethylene (OE) amines produce amphiphilic random copolymers with same degree of polymerization and equal extent of randomness. 1H‐NMR and FT‐IR data indicate quantitative substitution in all cases. The critical aggregation concentration (CAC) for all the polymers is estimated to be in the range of 10?5 M. Stability of these nano‐aggregates is studied by photoluminescence using time dependent F—rster Resonance Energy Transfer (FRET) between co‐encapsulated lipophilic dyes namely DiO and DiI in the hydrophobic pocket of the aggregates. These studies suggest remarkably high stability for all systems. However those with shorter hydrophilic pendant chains are found to be even more robust. Morphology is examined by high resolution transmission electron microscopy (HRTEM) which reveals multi‐micellar clusters and vesicles for polymers containing short and longer OE segments, respectively. Encapsulation efficacy is tested with both hydrophobic and hydrophilic guest molecules. All of them can encapsulate hydrophobic guest pyrene while a hydrophilic dye Calcein can be sequestered only in vesicle forming polymers. Lower critical solution temperature (LCST) is exhibited by only one polymer that contains the shortest OE chains. All polymers exhibit excellent cell viability as determined by MTT assay. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4932–4943  相似文献   

12.
    
Thermosensitive diethylene glycol‐derived poly(L ‐glutamate) homopolypeptides (i.e., poly‐L ‐EG2‐Glu) with different molecular weights (MW) (Mn,GPC = 5380–32520) were synthesized via the ring‐opening polymerization (ROP) of EG2‐L ‐glutamate N‐carboxyanhydride (EG2‐Glu‐NCA) in N,N‐dimethylformamide solution at 50 °C. Their molecular structure, conformation transition, liquid crystal (LC) phase behavior, lower critical solution temperature (LCST) transition, and morphology evolution were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide angle X‐ray diffraction, polarized optical microscope, transmission electron microscope, and dynamic light scattering. In solid state, the homopolypeptide poly‐L ‐EG2‐Glu presented a conformation transition from α‐helix to β‐sheet with increasing their MW at room temperature, while it mainly assumed an α‐helix of 80–86% in aqueous solution. Poly‐L ‐EG2‐Glu showed a thermotropic LC phase with a transition temperature of about 100 °C in solid state, while it gave a reversible LCST transition of 34–36 °C in aqueous solution. The amphiphilic homopolypeptide poly‐L ‐EG2‐Glu self‐assembled into nanostructures in aqueous solution, and their critical aggregation concentrations decreased with increasing MW. Interestingly, their morphology changed from spherical micelles to worm‐like micelles, then to fiber micelles with increasing MW. This work provides a simple method for the generation of different nanostructures from a thermosensitive biodegradable homopolypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
    
A novel class of thermoresponsive and reduction‐sensitive polymer, p(PEG‐MEMA‐co‐Boc‐Cyst‐MMAm), containing disulfide linkages and removable hydrophobic tert‐butyloxycarbonyl side chains was synthesized. The cloud points (CP) of p(PEG‐MEMA‐co‐Boc‐Cyst‐MMAm) in water determined by UV/VIS spectrometer were between 20 °C and 57 °C, which shows that the CP can be tuned by adjusting the copolymer composition. Moreover, the thermosensitive polymers p(PEG‐MEMA‐co‐Boc‐Cyst‐MMAm) formed stable nanoparticles in neutral aqueous medium, but rapidly destabilized in an reductive environment mimicking the intracellular space making them suitable for cytoplasmic drug delivery. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5989–5997, 2009  相似文献   

14.
    
A supramolecular block copolymer is prepared by the molecular recognition of nucleobases between poly(2‐(2‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐SS‐poly(ε‐caprolactone)‐adenine (P(MEO2MA‐co‐OEGMA)‐SS‐PCL‐A) and uracil‐terminated poly(ethylene glycol) (PEG‐U). Because the block copolymer is linked by the combination of covalent (disulfide bond) and noncovalent (A U) bonds, it not only has similar properties to conventional covalently linked block copolymers but also possesses a dynamic and tunable nature. The copolymer can self‐assemble into micelles with a PCL core and P(MEO2MA‐co‐OEGMA)/PEG shell. The size and morphologies of the micelles/aggregates can be adjusted by altering the temperature, pH, salt concentration, or adding dithiothreitol (DTT) to the solution. The controlled release of Nile red is achieved at different environmental conditions.

  相似文献   


15.
    
Summary: Spherical micelles have been formed by mixing, in DMF, a poly(styrene)‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐block‐P2VP‐block‐PEO) triblock copolymer with either poly(acrylic acid) (PAA) or a tapered triblock copolymer consisting of a PAA central block and PEO macromonomer‐based outer blocks. Noncovalent interactions between PAA and P2VP result in the micellar core while the outer corona contains both PS and PEO chains. Segregation of the coronal chains is observed when the tapered copolymer is used.

Inclusion of comb‐like chains with short PEO teeth in the corona triggers the nanophase segregation of PS and PEO as illustrated here (PS = polystyrene; PEO = poly(ethylene oxide)).  相似文献   


16.
17.
    
Thiol‐responsive micelles consisting of novel nonionic gemini surfactants with a cystine disulfide spacer are reported. The gemini surfactants, (C18‐Cys‐mPEG)2 and ((C18)2‐Lys‐Cys‐mPEG)2, were synthesized from polyethylene glycol, cysteine, and stearic acid, and their structures were confirmed by 1H NMR and gel permeation chromatography. (C18‐Cys‐mPEG)2 and ((C18)2‐Lys‐Cys‐mPEG)2 formed micelles with average diameters of 13 and 22 nm above the critical micelle concentration of 6.5 and 4.7 µg mL?1, respectively. The micelles of ((C18)2‐Lys‐Cys‐mPEG)2 containing more stearoyl groups showed encapsulated more hydrophobic indomethacin (IMC) with higher entrapment efficiencies than those of (C18‐Cys‐mPEG)2. The gemini surfactant micelles exhibited an accelerated release of encapsulated IMC with the concentration of the reducing agent, glutathione (GSH), whereas they were unaffected by the presence of reduced GSH (GSSG). The 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)?2‐(4‐sulfophenyl)?2H‐tetrazolium studies revealed the noncytotoxic nature of the gemini surfactant micelles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 582–589  相似文献   

18.
    
A hyaluronic acid‐based anionic nanogel formed by self‐assembly of cholesteryl‐group‐bearing HA is designed for protein delivery. The HA nanogel spontaneously binds various types of proteins without denaturation, such as recombinant human growth hormone, erythropoietin, exendin‐4, and lysozyme. The HA nanogel shows unique colloidal properties, in particular that an injectable hydrogel is formed by salt‐induced association of the HA nanogel. A pharmacokinetic study in rats shows that an in situ gel formulation, prepared by simply mixing rhGH and HA nanogel in phosphate buffer, maintains plasma rhGH levels within a narrow range over one week. Therefore, HA nanogels offer a simple method for easy formulation of therapeutic proteins and are effective for sustained protein release systems.

  相似文献   


19.
    
We report on the preparation of reduction‐responsive amphiphilic block copolymers containing pendent p‐nitrobenzyl carbamate (pNBC)‐caged primary amine moieties by reversible addition–fragmentation chain transfer (RAFT) radical polymerization using a poly(ethylene glycol)‐based macro‐RAFT agent. The block copolymers self‐assembled to form micelles or vesicles in water, depending on the length of hydrophobic block. Triggered by a chemical reductant, sodium dithionite, the pNBC moieties decomposed through a cascade 1,6‐elimination and decarboxylation reactions to liberate primary amine groups of the linkages, resulting in the disruption of the assemblies. The reduction sensitivity of assemblies was affected by the length of hydrophobic block and the structure of amino acid‐derived linkers. Using hydrophobic dye Nile red (NR) as a model drug, the polymeric assemblies were used as nanocarriers to evaluate the potential for drug delivery. The NR‐loaded nanoparticles demonstrated a reduction‐triggered release profile. Moreover, the liberation of amine groups converted the reduction‐responsive polymer into a pH‐sensitive polymer with which an accelerated release of NR was observed by simultaneous application of reduction and pH triggers. It is expected that these reduction‐responsive block copolymers can offer a new platform for intracellular drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1333–1343  相似文献   

20.
    
Polymer nanoparticles are prepared by self‐assembly of visible light and pH sensitive perylene‐functionalized copolymers which are synthesized by quaternization between 1‐(bromomethyl)perylene and the dimethylaminoethyl units of poly(dimethylaminoethyl methacrylate) (PDMAEMA). The perylene‐containing polymethacrylate segments afford the system visible light responsiveness and the unquaternized PDMAEMA segments afford the system pH responsiveness. The self‐assembled nanoparticles exhibit a unique dual stimuli response. They can be photocleaved under visible light irradiation, shrunken to smaller nanoparticles at high pH, and swollen at low pH. The structural change endows the nanoparticle with great potential as a sensitive nanocarrier for controlled release of Nile Red and lysozyme under this stimulation. The visible light responsiveness and synergistic effect on the release of loaded molecules with the dual stimulation may obviate the need for harsh conditions such as UV light or extreme pH stimulation, rendering the system more applicable under mild conditions.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号