首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Poly(ethylene terephthalate) (PET) was blended with a frustrated liquid‐crystalline polymer, poly(ethylene terephthalate‐co‐4,4′‐bibenzoate) (PETBB55), in the weight ratio 70:30. Under the melt conditions used for blending, NMR analysis showed that some transesterification had occurred. Accordingly, the blended product resembled a blocky copolymer more closely than it did a physical blend. A random copolymer with the same composition was synthesized for comparison. The study examined the effect of the comonomer distribution (blocky vs random) on the thermal behavior and oxygen transport properties of the glassy and cold‐drawn polymers. The glass‐transition temperatures and the crystallization behavior suggested that the PETBB55 blocks phase‐separated as very small domains. Higher levels of orientation, as indicated by higher densities and higher trans glycol fractions, were achieved by the cold drawing of the blocky copolymer. It was speculated that the cold drawing of the blocky copolymer at temperatures up to the glass‐transition temperature of the PETBB55 blocks produced highly oriented PETBB55 domains. Constraints imposed by connections between PET and the PETBB55 blocks prevented the relaxation of the continuous PET phase, even at temperatures well above the glass‐transition temperature of the PET blocks. In this sense, the blocky copolymer embodied the concept of a self‐reinforcing polymer. As a result, an improved oxygen barrier was obtained over a wider range of cold‐draw temperatures with the blocky copolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 289–307, 2003  相似文献   

2.
Segmented poly(ether‐block‐amide) copolymers are typically known as polyamide‐based thermoplastic elastomers consisting of hard, crystallizable polyamide block and flexible, amorphous polyether block. The melting characteristics of a poly(ether‐block‐amide) copolymer melt‐crystallized under various quiescent, isothermal conditions were calorimetrically investigated using differential scanning calorimetry (DSC). For such crystallized copolymer samples, their crystalline structures under ambient condition and the structural evolutions upon heating from ambient to complete melting were characterized using ambient and variable‐temperature wide‐angle X‐ray diffractometry (WAXD), respectively. It was observed that dependent of specific crystallization conditions, the copolymer samples exhibited one, two, or three melting endotherms. The ambient WAXD results indicated that all melt‐crystallized copolymer samples only exhibited γ‐form crystals associated with the hexagonal habits of the polyamide homopolymer, whereas variable‐temperature WAXD data suggested that upon heating from ambient, a melt‐crystallized copolymer might exhibit so‐called Brill transition before complete melting. Based on various DSC and variable‐temperature WAXD experimental results obtained in this study, the applicability of different melting mechanisms that might be responsible for multiple melting characteristics of various crystallized PEBA copolymer samples were discussed. It was postulated that the low (T m1) endotherm was primarily because of the disruption of less thermally stable, short‐range ordered structure of amorphous polyamide segments of the copolymer, which was only formed after the completion of primary crystallization via so‐called annealing effects. The intermediate (Tm2) and high (Tm3) endotherms were attributed to the melting of primary crystals within polyamide crystalline microdomains of the copolymer. The appearance of these two melting endotherms might be somehow complicated by thermally induced Brill transition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2035–2046, 2008  相似文献   

3.
The results of a study on the effects of a plasticizer, tricresyl phosphate, on the mechanical and thermal properties of unoriented films of poly(vinylidene fluoride–trifluoroethylene) (VF2/VF3) copolymer (73/27 mol%) are presented. Films were prepared by both quenching and slow‐cooling from the melt with plasticizer concentrations of 0, 5, and 10% by weight. For the slow‐cooled films, a reduction in crystallinity by 25% was observed for the heavily plasticized films, together with a reduced dynamic mechanical modulus (≈ 58%) and an increased dielectric constant (≈ 200%). For the quenched films, a small increase in crystallinity was observed together with a reduced modulus and an increased dielectric constant. Measurements of the temperature dependence of the modulus and dielectric constant at 10 Hz. were also carried out from −100°C to 100°C. This data showed that for slow‐cooled films the glass transition temperature decreased from −28°C to ‐52°C at the highest doping level. DSC thermal analysis shows a decrease in the Curie transition (≈ 4°C) and melting temperatures (≈ 9°C) for the quenched films, while the slow‐cooled films only showed a decrease in melting temperature (≈ 10°C), while the Curie transition temperature was unaffected. In addition, evidence of a two‐phase system or a nonferroelectric crystal phase is noted by the presence of two Curie transition temperature peaks. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 19–28, 1999  相似文献   

4.
A polyethylene‐block‐polystyrene copolymer film having a bicontinuous crystalline/amorphous phases was tensile‐drawn under various conditions for the structural arrangement of these phases. The prepared film could be drawn below the melting temperature of the polyethylene component, with the highest drawability obtained at 60°C. However, the initial bicontinuous structure was gradually destroyed with increasing strain because the drawing temperature was lower than the glass‐transition temperature of the polystyrene component. Correspondingly, a necking phenomenon was clearly recognizable when samples were drawn. In contrast, drawing near the melting temperature of the polyethylene component produced less orientation of both the crystalline and amorphous phases, resulting in homogeneous deformation with lower drawing stress. These results indicated that the modification of the lower ductility of the polystyrene component was key to the effective structural arrangement of both phases by tensile drawing. Here, a solvent‐swelling technique was applied to improve polystyrene deformability even below its glass‐transition temperature. Tensile drawing after such a treatment successfully induced the orientation of both the crystalline and amorphous phases while retaining their initial continuities. A change in the deformation type from necking to homogeneous deformation was also confirmed for the stress–strain behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1731–1737, 2006  相似文献   

5.
In this study, the structure–property relationships for a series of statistical 2‐nonyl‐2‐oxazoline (NonOx) and 2‐phenyl‐2‐oxazoline (PhOx) copolymers were investigated for the first time. The copolymerization kinetics were studied and the reactivity ratios were calculated to be rNonOx = 7.1 ± 1.4 and rPhOx = 0.02 ± 0.1 revealing the formation of gradient copolymers. The synthesis of a systematical series of NonOx–PhOx copolymers is described, whereby the amount of NonOx was increased in steps of 10 mol %. The thermal and surface properties were investigated for this series of well‐defined copolymers. The thermal properties revealed a linear decrease in glass transition temperature for copolymers containing up to 39 wt % NonOx. Furthermore, the melting temperature of the copolymers containing 0 to 55 wt % PhOx linearly decreased most likely due to disturbance of the NonOx crystalline domains by incorporation of PhOx in the NonOx part of the copolymer. The surface energies of spincoated polymer films revealed a strong decrease in surface energy upon incorporation of NonOx in the copolymers due to strong phase separation between NonOx and PhOx allowing the NonOx chains to orient to the surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6433–6440, 2009  相似文献   

6.
Nanocomposites based on polyvinylidene fluoride–trifluoroethylene copolymer and up to 4 vol % of hydrophobized clay nanoparticles are investigated. The structure, piezoelectric properties, and oxygen permeability of solvent cast films are analyzed before and after annealing above the Curie temperature of the polymer. Exfoliation of the clay takes place at concentrations up to 1 vol %, beyond which it rapidly drops and is absent at a concentration of 4 vol %. The presence of clay does not change the crystallinity of the polymer, but leads to a threefold decrease of the oxygen permeability at a concentration of 0.5 vol %. Annealing at 130 °C increases the crystallinity, the proportion of β phase up to 94%, and the piezoelectric coefficient by 20–40% at clay fractions below 1 vol %. Annealing also leads to a remarkable 3‐ to 10‐fold decrease of O2 permeability and to intriguing changes of the activation energy for O2 transport, which decreases from 56 kJ/mol for the as‐cast polymer to below 10 kJ/mol for the polymer and exfoliated composite. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1828–1836  相似文献   

7.
The improvement of oxygen‐barrier properties of glassy polyesters by orientation was examined. Poly(ethylene terephthalate) (PET), poly(ethylene naphthalate), and a copolymer based on PET in which 55 mol % of the terephthalate was replaced with bibenzoate (PET‐BB55) were oriented by constrained uniaxial stretching. In a fairly narrow window of stretching conditions near the glass‐transition temperature, it was possible to achieve uniform extension of the polyesters without crystallization or stress whitening. The processes of orientation and densification correlated with the conformational transformation of glycol linkages from gauche to trans. Oxygen permeability, diffusivity, and solubility decreased with the amount of orientation. A linear relationship between the oxygen solubility and polymer specific volume suggested that the cold‐drawn polyester could be regarded as a one‐phase densified glass. This allowed an analysis of oxygen solubility in accordance with free‐volume concepts of gas permeability in glassy polymers. Orientation was seen as the process of decreasing the amount of excess‐hole free volume and bringing the nonequilibrium polymer glass closer to the equilibrium (zero‐solubility) condition. Cold drawing most effectively reduced the free volume of PET‐BB55. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 862–877, 2002  相似文献   

8.
The role of hydrogen bonding in promoting intermolecular cohesion and higher glass‐transition temperatures of polymer is a subject of longstanding interest. A series of poly(vinylphenol‐co‐vinylpyrrolidone) copolymers were prepared by the free‐radical copolymerization of acetoxystyrene and vinylpyrrolidone; this was followed by the selective removal of the acetyl protective group, with corresponding and significant glass‐transition‐temperature increases after this procedure. The incorporation of acetoxystyrene into poly(vinylpyrrolidone) resulted in lower glass‐transition temperatures because of the reduced dipole interactions in its homopolymers. However, the deacetylation of acetoxystyrene to transform the poly(vinylphenol‐co‐vinylpyrrolidone) copolymer enhanced the higher glass‐transition temperature because of the strong hydrogen bonding in the copolymer chain. The thermal properties and hydrogen bonding of these two copolymers were investigated with differential scanning calorimetry and Fourier transform infrared spectroscopy, and good correlations between the thermal behaviors and IR results were observed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2313–2323, 2002  相似文献   

9.
Self‐assembly and mechanical properties of triblock copolymers in a mid‐block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–Pn BA–PMMA] in two different mid‐block selective solvents, n‐butanol and 2‐ethyl‐1‐hexanol. Gel formation resulting from end‐block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of ?80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear‐rheometry, thermal analysis, and small‐angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end‐blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self‐assembled triblock copolymer gel over a large length scale and wide temperature range. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 877–887  相似文献   

10.
The relaxation behaviors of poly(dimethylsiloxane‐co‐diphenylsiloxane)s with different compositions were investigated using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). It is indicated that the content of Ph2SiO unit, which is closely associated with crystallinity of polysiloxane, has a remarkable influence on its relaxation behavior. Two‐phase (crystalline and amorphous phase) structure in the semicrystalline polysiloxane of the present system can be determined for discussing relaxation behavior. An increase in relaxation strength can be reasoned to a cooperative effect of decrease in fraction of crystalline phase and increase in friction between molecular chains. And enhancements in glass transition temperature (Tg) and effective activation energy for glass transition (Ea(eff)) were ascribed more to the stiffness imposed by Ph2SiO unit than decrease in fraction of crystalline phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1652–1659, 2008  相似文献   

11.
The improvement in the oxygen‐barrier properties of poly(ethylene terephthalate) (PET) by orientation and heat setting was examined. Orientation was carried out at 65 °C by constrained uniaxial stretching to a draw ratio of about 4. Heat setting was performed at temperatures from 90 to 160 °C with the specimen taut. Orientation decreased the permeability of PET to almost one‐third that of the unoriented, amorphous polymer because of decreases in both the diffusion coefficient and the solubility coefficient. The proposed two‐phase model for oriented PET consisted of a permeable isotropic amorphous phase (density = 1.335 g/cm3) with ethylene linkages predominately in the gauche conformation and an impermeable oriented phase (density = 1.38 g/cm3) with ethylene linkages that had transformed from the gauche conformation to the trans conformation during stretching. Chain segments in the trans conformation did not possess crystalline order; instead, they were viewed as forming an ordered amorphous phase. Crystallization by heat setting above the glass‐transition temperature did not dramatically affect the permeability. However, a decrease in the diffusion coefficient, offset by an increase in the solubility coefficient, indicated that crystallization affected the barrier properties of the permeable amorphous phase. Analysis of the barrier data, assuming a two‐phase model with variable density for both the permeable and impermeable phases, revealed that the impermeable phase density increased during crystallization, approaching a value of 1.476 g/cm3. This value is consistent with previous measurements of the density of the defective crystalline phase in PET. The density of the permeable amorphous phase decreased concurrently to about 1.325 g/cm3, indicating the appearance of additional free volume. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1679–1686, 2000  相似文献   

12.
To enhance the heat resistance of poly(styrene‐co‐acrylonitrile‐co‐butadiene), ABS, miscibility of poly(styrene‐co‐acrylonitrile), SAN, with poly(styrene‐con‐phenyl maleimide), SNPMI, having a higher glass transition temperature than SAN was explored. SAN/SNPMI blends casted from solvent were immiscible regardless of copolymer compositions. However, SNPMI copolymer forms homogeneous mixtures with SAN copolymer within specific ranges of copolymer composition upon heating caused by upper critical solution temperature, UCST, type phase behavior. Since immiscibility of solvent casting samples can be driven by solvent effects even though SAN/SNPMI blends are miscible, UCST‐type phase behavior was confirmed by exploring phase reversibility. When copolymer composition of SNPMI was fixed, the phase homogenization temperature of SAN/SNPMI blends was increased as AN content in SAN copolymer increased. To understand the observed phase behavior of SAN/SNPMI blend, interaction energies of blends were calculated from the UCST‐type phase boundaries by using the lattice‐fluid theory combined with a binary interaction model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1131–1139, 2008  相似文献   

13.
The crystalline‐phase transition in polyamide‐66/montmorillonite nanocomposites before melting was investigated by in situ X‐ray diffraction and is reported for the first time in this work. The phase‐transition temperature in the nanocomposites was 170 °C, 20 °C lower than that in polyamide‐66. The lower phase‐transition temperature of the nanocomposites could be attributed to the γ‐phase‐favorable environment caused by silicate layers. Meanwhile, the addition of silicate layers changed the crystal structure of the polyamide‐66 matrix and influenced the phase‐transition behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 63–67, 2003  相似文献   

14.
The thermal alignment of the liquid crystalline fluorene‐thiophene copolymer (F8T2) on rubbed polyimide surfaces is investigated by ex‐situ and in‐situ X‐ray scattering experiments. The ex‐situ characterization allows an assignment of the observed diffraction peaks to distances between polymer backbones (1.6 nm), distances between the flexible side groups of the polymer chains (0.43 nm), and intramolecular distances of adjacent ring units (0.5 nm). The in‐situ characterization allows a temperature dependent observation of the polymer chain alignment. A gradual alignment process of the polymer backbones is observed for temperatures up to 563 K. Decreasing temperature after the polymer chain alignment is accompanied by a glass transition of the side chains at 380 K. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:1599–1604, 2009  相似文献   

15.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

16.
2‐Oxo‐12‐crown‐4‐ether (OC) was procured in a novel, two‐step procedure in a 37% overall yield. This interesting hydrophilic lactone was effectively polymerized with Novozym 435 as the catalyst: within 10 min, the monomer conversion was greater than 95%. Poly(2‐oxo‐12‐crown‐4‐ether) [poly(OC)] was obtained as a viscous oil with a glass‐transition temperature of approximately ?40 °C, and it was soluble in water. Subsequently, OC was copolymerized with ω‐pentadecanolactone (PDL). A kinetic evaluation of both monomers showed that for OC, the Michaelis–Menten constant (KM) and the maximal rate of polymerization (Vmax) were 2.7 mol/L and 0.24 mol/L min, respectively, whereas for PDL, KM and Vmax were 0.5 mol/L and 0.09 mol/L min, respectively. Although OC polymerized five times faster than PDL, 1H NMR analysis of the copolymers revealed a random copolymer structure. Differential scanning calorimetry traces of the copolymers showed that they were semicrystalline and that the melting temperature and melting enthalpy of the copolymers linearly decreased with an increasing amount of OC. The melting temperature of the copolymers could be adequately predicted by the Baur equation, and this suggested that poly (OC) was rejected from the poly(ω‐pentadecanolactone) [poly(PDL)] crystals. Solid‐state NMR studies confirmed that the crystalline phase exclusively consisted of poly (PDL), whereas the amorphous phase was a mixture of OC and PDL units. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2166–2176, 2006  相似文献   

17.
18.
Four bisacrylate mesogenic monomers and the corresponding liquid‐crystalline thermosets were synthesized. The chemical structures of the intermediate compounds and monomers obtained were confirmed by elemental analyses, Fourier transform infrared, and 1H NMR and 13C NMR spectra. The mesomorphic properties and thermal stability were investigated with differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and X‐ray diffraction measurements. The influence of the curing temperatures and time on the phase behavior and thermal stability of the thermosets was discussed. All the monomers and thermosets exhibited a nematic schlieren texture. However, the monomers only showed the melting transition, and the thermosets displayed the glass transition. The experimental results demonstrated that the monomer structures strongly affected the phase behavior and the curing reaction rate, and the glass‐transition temperatures and thermal stability of the thermosets increased with the curing temperature and time. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4478–4485, 2005  相似文献   

19.
Polyamide–polyester multiblock copolymers were synthesized through the reaction of α,ω‐dicarboxy polyamides and polyesters with various arylene bis(2‐oxazoline)s. 2,2′‐(2,6‐Pyridylene)bis(2‐oxazoline) was very reactive and yielded multiblock copolymers with number‐average molar masses ranging from 15,000 to 25,000 after 30 min of reaction in the bulk at 200 °C. The molar masses and thermal properties of the resulting random multiblock copolymers (glass‐transition temperature, melting temperature, and melting enthalpy) were close to those of their alternating homologues prepared by conventional polycondensation between diamino polyamides and dicarboxy polyesters. This showed that the presence of coupling agent moieties in the polymer chains did not exert a significant influence on the block copolymer morphology. The chain‐coupling method showed several advantages over conventional polycondensation: a much shorter reaction time, a lower temperature, no byproducts, and easy control of the final copolymer properties through the mass ratio of the starting oligomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1331–1341, 2005  相似文献   

20.
Aromatic polyamides based on poly(m‐xylylene adipamide) (MXD‐based polyamides) and poly(hexamethylene isophthalamide) (HMD‐based polyamides) were examined. Insight into the excellent gas‐barrier properties was obtained by the characterization of the effect of water sorption on the thermal transitions, density, refractive index, free‐volume hole size, and oxygen‐transport properties. Reversing the carbonyl position with respect to the amide nitrogen substantially lowered the oxygen permeability of MXD‐based polyamides in comparison with that of HMD‐based polyamides by facilitating hydrogen‐bond formation. The resulting restriction of conformational changes and segmental motions reduced diffusivity. The primary effect of water sorption was a decrease in the glass‐transition temperature (Tg) attributed to plasticization by bound water. No evidence was found to support the idea that sorbed water filled holes of free volume. When the polymer was in the glassy state, the drop in Tg accounted for hydration‐dependent changes in the density, refractive index, and free‐volume hole size. The correlation of the oxygen solubility with Tg and density confirmed the concept of oxygen sorption as filling holes of excess free volume. In some cases, water sorption produced a glass‐to‐rubber transition. The onset of rubbery behavior was associated with a minimum in the oxygen permeability. The glass‐to‐rubber transition also facilitated the crystallization of MXD‐based polymers, which complicated the interpretation of oxygen‐transport behavior at higher relative humidity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1365–1381, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号