首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐dimensional (2D) WS2 nanosheets (NSs) as a promising thermoelectric (TE) material have gained great concern recently. The low electrical conductivity significantly limits its further development. Herein, we reported an effective method to enhance the TE performance of WS2 NSs by combining poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS). The restacked WS2 NSs thin film with 1T phase structure obtained by a common chemical lithium intercalation show a high Seebeck coefficient of 98 μV K?1 and a poor electrical conductivity of 12.5 S cm?1. The introduction of PEDOT:PSS with different contents obviously improve the electrical conductivity of WS2 NSs thin films. Although a declining Seebeck coefficient was observed, an optimized TE power factor of 45.2 μW m?1 k?1 was achieved for WS2/PEDOT:PSS composite thin film. Moreover, the as‐prepared WS2/PEDOT:PSS thin film can be easily peeled off and transferred to other substrate leading to a more promising application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 997–1004  相似文献   

2.
We have investigated the electrical transport properties of poly(3,4‐ethylenedioxythiophen)/poly(4‐styrene‐sulfonate) (PEDOT:PSS) with PEDOT‐to‐PSS ratios from 1:1 to 1:30. By combining impedance spectroscopy with thermoelectric measurements, we are able to independently determine the variation of electrical conductivity and charge carrier density with PSS content. We find the charge carrier density to be independent of the PSS content. Using a generalized effective media theory, we show that the electrical conductivity in PEDOT:PSS can be understood as percolation between sites of highly conducting PEDOT:PSS complexes with a conductivity of 2.3 (Ωcm)?1 in a matrix of excess PSS with a low conductivity of 10?3 (Ω cm)?1. In addition to the transport properties, the thermoelectric power factors and Seebeck coefficients have been determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

3.
Organic thin film nanocomposites, prepared by liquid‐phase exfoliation, were investigated for their superior electrical properties and thermoelectric behavior. Single‐walled carbon nanotubes (SWNT) were stabilized by intrinsically conductive poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in an aqueous solution. The electrical conductivity (σ) was found to increase linearly as 20 to 95 wt % SWNT. At 95 wt % SWNT, these thin films exhibit metallic electrical conductivity (~4.0 × 105 S m?1) that is among the highest values ever reported for a free‐standing, fully organic material. The thermopower (S) remains relatively unaltered as the electrical conductivity increases, leading to a maximum power factor (S2σ) of 140 μW m?1 K?2. This power factor is within an order of magnitude of bismuth telluride, so it is believed that these flexible films could be used for some unique thermoelectric applications requiring mechanical flexibility and printability. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

4.
As conventional organic solvents present inherent toxicity, deep eutectic solvents (DES) have been considered as excellent candidates due to their green characteristics. In this work, thermoelectric properties enhancement of PEDOT:PSS films is achieved by introducing DES as an additive and post‐treatment reagent. Direct addition and post‐treatment approaches lead to a maximum Seebeck coefficient of 29.1 μV K?1 and electrical conductivity of 620.6 S cm?1, respectively. In addition, an optimal power factor is obtained by DES post‐treatment, reaching up to 24.08 μW m?1 K?2, which is approximately four orders of magnitude higher than the pure PEDOT:PSS. Assuming a thermal conductivity of 0.17 W m?1 K?1, the maximum ZT value is estimated to be 0.042 at 300 K. Further, atomic force microscopy and X‐ray photoelectron spectroscopy are performed and suggest that the remarkably enhanced electrical conductivity originates from the removal of the excess insulating PSS and the phase separation between the PEDOT and PSS chains. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 885–892  相似文献   

5.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been studied for a wide range of applications due to its potential as a transparent electrode. Herein, the use of imidazole and its derivatives as a neutralizing additive for PEDOT:PSS dispersion and in‐depth studies of their effects in terms of electrical properties and stability is reported. Although the neutralization in general reduces the electrical conductivity of PEDOT:PSS, the conductivity after imidazole treatment (685.2 S cm?1) is higher than that after treatment of other derivatives. Spectroscopic and thermoelectric studies show that the de‐doping effect resulted in the conductivity reduction. As a trade‐off of the conductivity reduction, greatly enhanced long‐term stability and noncorrosive characteristics are obtained after neutralization. The change in sheet resistance of imidazole‐treated PEDOT:PSS after 500 h under harsh conditions (85 °C and 85% humidity) is half that of the untreated samples, demonstrating the great enhancement of the stability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1530–1536  相似文献   

6.
Vapor‐phase polymerization (VPP) is an important method for the fabrication of high‐quality conducting polymers, especially poly(3,4‐ethylenedioxythiophene) (PEDOT). In this work, the effects of additives and post‐treatment solvents on the thermoelectric (TE) performance of VPP‐PEDOT films were systematically investigated. The use of 1‐butyl‐3‐menthylinidazolium tetrafluoroborate ([BMIm][BF4], an ionic liquid) was shown to significantly enhance the electrical conductivity of VPP‐PEDOT films compared with other additives. The VPP‐PEDOT film post‐treated with mixed ethylene glycol (EG)/[BMIm][BF4] solvent displayed the high power factor of 45.3 μW m?1 K?2 which is 122% higher than that prepared without any additive or post‐treatment solvent, along with enhanced electrical conductivity and Seebeck coefficient. This work highlighted the superior effect of the [BMIm][BF4] additive and the EG/[BMIm][BF4] solvent post‐treatment on the TE performance of the VPP‐PEDOT film. These results should help with developing the VPP method to fabricate high‐performance PEDOT films. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1738–1744  相似文献   

7.
Thermoelectric (TE) properties of flexible and free‐standing poly(3,4‐ethylenedioxythiophene) (PEDOT) films synthesized via galvanostatic polymerization of 3,4‐ethylenedioxythiophene in propylene carbonate containing sulfated poly(β‐hydroxyethers) (S‐PHE) as polymer electrolyte were elaborately studied. Both electrical conductivities (σ ) and Seebeck coefficients (S ) of the PEDOT:S‐PHE films were increased by decreasing the temperature (T ) or by increasing the current density (J ) during electrosynthesis. Possible reasons for the lack of a trade‐off relation commonly observed between σ and S are discussed on the basis of SEM and oxidation‐level measurements. Preparation of the PEDOT:S‐PHE films was optimized with respect to T and J . In addition, the oxidation level of the PEDOT:S‐PHE films was controlled by potential and the change of their TE performances was discussed in conjunction with the change of chemical species involved. The power factor (PF = σS 2) of the PEDOT:S‐PHE films reached 7.9 μW m?1 K?2, leading to a dimensionless TE figure‐of‐merit (ZT ) of 0.013. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 524–531  相似文献   

8.
Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (HCT‐PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm?1 and a low sheet resistance of 0.59 ohm sq?1. Organic solar cells with laminated HCT‐PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum‐deposited Ag top electrodes. More importantly, the HCT‐PEDOT:PSS film delivers a specific capacitance of 120 F g?1 at a current density of 0.4 A g?1. All‐solid‐state flexible symmetric supercapacitors with the HCT‐PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm?3 at a power density of 100 mW cm?3 and 3.15 mWh cm?3 at a very high power density of 16160 mW cm?3 that outperforms previous reported solid‐state supercapacitors based on PEDOT materials.  相似文献   

9.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

10.
Conventional syntheses of polymer–inorganic composite thermoelectric materials suffer major problems such as inhomogeneity, large particle size, and oxidation that result in ineffective loading. Now a one‐step synthesis can be used to fabricate high‐quality small‐sized anions codoped poly(3,4‐ethylenedioxythiophene):dodecylbenzenesulfonate/Cl‐tellurium (PEDOT:DBSA/Cl‐Te) composite films using a series of novel TeIV‐based oxidants. The synchronized production of PEDOT and Te results in thick and homogeneous films containing evenly distributed and well‐protected Te quantum dots. Owing to the heavily doped crystalline polymer matrix as well as the <5 nm unoxidized Te quantum dot loading, at low Te concentrations as 2.1–5.8 wt %, the films exhibits high power factors of about 100 μW m?1 K?2, which is 50 % higher compared to a pure PEDOT:DBSA film.  相似文献   

11.
Transparent [90% transmittance at 550 nm at a sheet resistance (Rs) of 279 Ω sq?1] poly(3,4‐ethylenedioxythiophene) (PEDOT) films with electrical conductivities up to 1354 S cm?1 are prepared using base‐inhibited vapor phase polymerization at atmospheric pressure. The influence of reaction conditions, such as temperature and growth time, on the film formation is investigated. A simple and convenient two‐electrode method is used for the in situ measurement of resistance, enabling to investigate the growth mechanism of polymer films and the influence of different parameters (relative humidity and the amount of oxidant) on the film growth. Low humidity exerts a detrimental effect on film growth and conductivity. In situ Rs measurements suggest that a large structural change occurs upon washing the PEDOT‐oxidant film. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2014 , 52, 561–571  相似文献   

12.
Photolithographically patterned highly conductive (~1400 S/cm) poly(3,4‐ethylenedioxythio‐phene):poly(styrenesulfonate) (PEDOT:PSS) films are demonstrated as electrodes for organic light emitting diodes (OLEDs). With the assistance of hydrofluoroether (HFE) solvents and fluorinated photoresists, high‐resolution passive‐matrix OLEDs with PEDOT:PSS electrodes are fabricated, in which the OLEDs show comparable performance to those devices prepared on the indium tin oxide (ITO) electrodes. This photolithographic patterning process for PEDTO:PSS has great potential for applications which require flexible electrodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1221–1226  相似文献   

13.
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L~(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm~(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm~(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq~(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.  相似文献   

14.
We report the facile preparation of the conductive polymer composites containing the mixed‐valence tetrathiafulvalene (TTF) nanofibers and their applications as all‐organic transparent conductive materials. TTF can be used as a nanofiller for transforming conventional polymers to conductive materials. Self‐assemble nanofibers of the neutral and radical cation of TTF can be formed in the polymer solutions during the film deposition, and the resulting composite films with several micron thickness can serve as the conductive material with high transparency. Several kinds of conventional polymers, such as polystyrene, poly(methyl methacrylate) (PMMA), and poly(vinylpyrrolidone), can be used as a polymer matrix of the composites. The conductivities of the PMMA film containing 35 mol % of the mixed‐valence TTF and the PEDOT–PSS film showed similar values (2.8 × 10–2 and 5.4 × 10–1 S/cm, respectively). In contrast, the normalized transmittance of the PMMA film by 1‐μm thickness greatly increased (96%/μm) when compared with that of the PEDOT–PSS film (10%/μm). In addition, the degradation of the conductivity of the nanofibers by heating and aging was effectively suppressed in the composite samples. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6441–6450, 2009  相似文献   

15.
The degree of oxidation of conducting polymers has great influence on their thermoelectric properties. Free‐standing poly(3‐methylthiophene) (P3MeT) films were prepared by electrochemical polymerization in boron trifluoride diethyl etherate, and the fresh films were treated electrochemically with a solution of propylene carbonate/lithium perchlorate as mediator. The conductivity of the resultant P3MeT films depends on the doping level, which is controlled by a constant potential from ?0.5 to 1.4 V. The optimum electrical conductivity (78.9 S cm?1 at 0.5 V) and a significant increase in the Seebeck coefficient (64.3 μV K?1 at ?0.5 V) are important for achieving an optimum power factor at an optimal potential. The power factor of electrochemically treated P3MeT films reached its maximum value of 4.03 μW m?1 K?2 at 0.5 V. Moreover, after two months, it still exhibited a value of 3.75 μW m?1 K?2, and thus was more stable than pristine P3MeT due to exchange of doping ions in films under ambient conditions. This electrochemical treatment is a significant alternative method for optimizing the thermoelectric power factor of conducting polymer films.  相似文献   

16.
Nano-composite thin films of poly(3,4-ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT:PSS) with different loading concentrations of multi-walled carbon nanotubes (MWCNT) were deposited on glass substrates using inkjet printing and spin coating techniques. The surface energy of the substrate was modified using an oxygen plasma to achieve different degrees of wetting by the composite solution. We show that the electrical properties strongly depend on the wetting of the substrate and by controlling the wettability, the conductivity of the nano-composite samples can be improved. Based on polymer conductivity, the electrical conductivity of the composite film can be improved or degraded by orders of magnitude with the incorporation of the same concentration of MWCNT. Moreover, electrical measurements show strong correlation between the conductivity of the carbon nanotube network and the resulting nano-composite films. The dependence of electrical properties on the wettability and the conductivity of the composite components could explain the diversity in the electrical behaviour reported in the literature for PEDOT:PSS/MWCNT nano-composite thin films.
Figure
The impact on the morphological and electrical properties of PEDOT:PSS/CNT films as a result of surface wetting properties of the substrate  相似文献   

17.
Systematic research on the synthesis, chemical oxidative polymerization of 3,4‐ethylenedithiathiophene (EDTT) in the presence of surfactants or not, and solid‐state polymerization of 2,5‐dibromo‐3,4‐ethylenedithiathiophene (DBEDTT) and 2,5‐diiodo‐3,4‐ethylenedithiathiophene (DIEDTT) under solventless and oxidant‐free conditions has been investigated. Effects of oxidants (Fe3+ salts, persulfate salts, peroxides, and Ce4+ salts), solvents (H2O, CH3CN/H2O, and CH3CN), surfactants, and so forth on polymerization reactions and properties of poly(3,4‐ethylenedithiathiophene) (PEDTT) were discussed. Characterizations indicated that FeCl3 was more suitable oxidant for oxidative polymerization of EDTT, while CH3CN was a better solvent to form PEDTT powders with higher yields and electrical conductivities. Dispersing these powders in aqueous polystyrene sulfonic acid (PSSH) solution showed better stability and film‐forming property than sodium dodecylsulfate and sodium dodecyl benzene sulfonate. Oxidative polymerization of EDTT in aqueous PSSH solutions formed the solution processable PEDTT dispersions with good storing stability and film‐forming performance. Solvent treatment showed indistinctive effect on electrical conductivity of free‐standing PEDTT films. As‐formed PEDTT synthesized from solid‐state polymerization showed similar electrical conductivity, poorer stability, but better thermoelectric property than oxidative polymerization. Contrastingly, PEDTT synthesized from DIEDTT showed higher electrical conductivity (0.18 S cm?1) than DBEDTT which showed better thermoelectric property with higher power factor value (6.7 × 10?9 W m?1 K?2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   

19.
Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive aqueous dispersion synthesized by using emulsion polymerization method. To further enhance its solution processability and conductivity of PEDOT derivatives, we proposed to replace the nonconductive PSS with conductive poly[2‐(3thienyl)‐ethoxy‐4‐butylsulfonate] (PTEB) as surfactant for the emulsion polymerization of PEDOT. The reaction involved colloid stabilization and doping in one step, and yielded PEDOT:PTEB composite nanoparticles with high electrical conductivity. Contrary to its counterpart containing nonconductive surfactant, PEDOT: PTEB showed increasing film conductivity with increasing PTEB concentration. The result demonstrates the formation of efficient electrical conduction network formed by the fully conductive latex nanoparticles. The addition of PTEB for EDOT polymerization significantly reduced the size of composite particles, formed stable spherical particles, enhanced thermal stability, crystallinity, and conductivity of PEDOT:PTEB composite. Evidence from UV–VIS and FTIR measurement showed that strong molecular interaction between PTEB and PEDOT resulted in the doping of PEDOT chains. X‐ray analysis further demonstrated that PTEB chains were intercalated in the layered crystal structure of PEDOT. The emulsion polymerization of EDOT using conducting surfactant, PTEB demonstrated the synergistic effect of PTEB on colloid stability and intercalation doping of PEDOT during polymerization resulting in significant conductivity improvement of PEDOT composite nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2536–2548, 2008  相似文献   

20.
This study investigates the resistive behavior of rod‐coated micrometer thick films of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on ultra‐low modulus (120– 130 kPa) polydimethylsiloxane (PDMS) substrate having scratch or microtrench‐type roughness patterns. On average, the films were found to remain electrically functional up to 23% axial strain with an average increase of three times in the value of the normalized resistance. The films were also found to remain conductive up to bending diameter of 4 mm with an average increase of 1.12 times their initial resistance. The rod‐coated PEDOT:PSS films on ultra‐low modulus PDMS having microtrench‐type roughness were also found to remain functional even after 1000 bending cycles at a bending diameter of 4 mm and even smaller with an increase in resistance that was on average 1.15 times their initial resistance. The films were found to fail firstly by cracking and thereby debonding from the substrate under the application of axial strain. On the other hand, the films exhibit no delamination under bending strains. The results from this investigation suggest that the polymer–polymer laminate has potential applicability in stretchable and flexible electronics and related applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 226–233  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号