首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The “far‐field” effect of metal nanoparticles (NPs), when chromophores localized nearby metal NPs (typically the distance >λ/10), is an important optical effect to enhance emission in photoluminescence. The far‐field effect originates mainly from the interaction between origin emission and mirror‐reflected emission, resulting in the increased irradiative rate of chromophores on the mirror‐type substrate. Here, the far‐field effect is used to improve emission efficiency of polymer light‐emitting diodes (PLEDs). A universal performance improvement is achieved for the full visible light (red, green, blue) PLEDs, utilizing gold (Au) NPs to modify the indium tin oxide (ITO) substrates; this is shown by experimental and theoretical simulation to mainly come from the far‐field effect. The optimized distance, between the NPs and chromophores with visible light emission ranging from 400 to 700 nm, is 80–120 nm. Thus the scope of the far‐field may overlap the light‐emitting profile very well to enhance the efficiency of optoelectronic devices. The 30–40% enhancement is obtained for different color‐emitting materials through distance optimization. The far‐field effect is demonstrated to enhance device performance for materials in the full‐visible spectral range, which extends the optoelectric applications of Au NPs.  相似文献   

2.
Ordered Sr2CrReO6 has been synthesized recently. It is measured to be ferrimagnetic semiconductor, in contrary to the previous reports of metallic properties. To solve the discrepancy, we have investigated the compound by using the density functional theory. The semiconducting behavior is reproduced by including the electron correlation and spin–orbit coupling simultaneously. The calculated band gap is 0.22 eV, close to the experimental value of 0.21 eV. A large orbital moment of 0.69µB is found for Re, which is caused by the Coulomb‐enhanced spin–orbit coupling. By applying pressure, a semiconductor to half‐metal transition is observed through 5% volume compression.

  相似文献   


3.
Metal pellets of silver and copper for surface‐enhanced Raman scattering (SERS) spectroscopy were prepared by compression with different pressures. It was found that the SERS activity of the pellet could be controlled by pressure. Enhanced Raman scattering properties of the metal pellets in the presence of adsorbed 4‐mercaptobenzoic acid (4‐MBA) with excitation at 632.8 or 514 nm could be obtained by choosing proper pressure of pellatization. The SERS peak intensity of the band at ∼1584 cm−1 of 4‐MBA adsorbed on the metal pellets varies as a function of applied pressure, and which is about 1.2–32 times greater than when it is adsorbed on silver and copper particles. The calculated results of three‐dimensional finite‐difference time‐domain method (3D‐FDTD) are in good agreement with the experimental data. Moreover, no spurious peaks appear in the SERS spectra of the samples because no other chemicals are involved in the simple preparation process of the metal pellets, which will facilitate its use as an SERS‐active substrate for analytical purposes. In summary, SERS‐active metal pellets can be produced simply and cost effectively by the method reported here, and this method is expected to be utilized in the development of SERS‐based analytical devices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
重金属Cu2+增强农药甲萘威对ctDNA作用的光谱法研究   总被引:1,自引:1,他引:0  
运用荧光光谱和紫外吸收光谱研究了在Cu2 的参与下农药甲萘威与小牛胸腺DNA(ctDNA)的相互作用.实验结果表明,甲萘威可以嵌入小牛胸腺DNA的双链中形成DNA加合物,从而使甲萘威的荧光光谱发生猝灭.通过计算这种猝灭为静态猝灭.当有Cu2 的参与下,甲萘威的猝灭常数增大,结合位点数n也有很大的增加.通过对热力学函数的计算和分析,在有Cu2 参与时,金属离子可能在甲萘威分子与ctD-NA分子间起"离子架桥作用",使甲萘威分子与ctDNA分子间静电相互作用增强,故△H对△G的贡献增大.  相似文献   

5.
We investigate the plasmonic enhancement arising from bimetallic (Au/Ag) hierarchical structure and address the fundamental issues relating to the design of multilayered nanostructures for surface‐enhanced Raman scattering (SERS) spectroscopy. SERS‐active nanosphere arrays with Ag underlayer and Au overlayer were systematically constructed, with the thickness of each layer altered from 40 to 320 nm. The SERS responses of the resultant bimetallic structures were measured with 2‐naphthalenethiol dye as the test sample. The results confirm the dependency of SERS enhancement on the thickness ratio (Au : Ag). Compared with Au‐arrays, our optimized bimetallic structures, which exhibit nanoprotrusions on the nanospheres, were found to be 2.5 times more SERS enhancing, approaching the enhancement factor of an Ag‐array. The elevated SERS is attributed to the formation of effective hot‐spots associated with increased roughness of the outer Au film, resulting from subsequent sputtering of Au granules on a roughened Ag surface. The morphology and reflectance studies suggest that the SERS hot‐spots are distributed at the junctions of interconnected nanospheres and over the nanosphere surface, depending on the thickness ratio between the Au and Ag layers. We show that, by varying the thickness ratio, it is possible to optimize the SERS enhancement factor without significantly altering the operating plasmon resonance wavelength, which is dictated solely by the size of the underlying nanospheres template. In addition, our bimetallic substrates show long‐term stability compared with previously reported Ag‐arrays, whose SERS efficiency drops by 60% within a week because of oxidation. These findings demonstrate the potential of using such a bimetallic configuration to morphologically optimize any SERS substrate for sensing applications that demand huge SERS enhancement and adequate chemical stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
龚志强  刘坚强 《中国物理 B》2010,19(6):67303-067303
In this paper, we investigate the optical properties of the double-layer metal films perforated with single apertures by analysing the coupling of localized surface plasmon polaritons (LSPPs). It is found that the amplitude and the wavelength of transmission peak in such a structure can be adjusted by changing the longitudinal interval D between two films and the lateral displacements d_{x} and d_{y} which are parallel and perpendicular to the polarization direction of incident light, respectively. The variation of longitudinal interval D results in the redshift of transmission peak due to the change of coupling strength of LSPPs near the single apertures. The amplitude of transmission peak decreases with the increase of d_{y} and is less than that in the case of d_{x}, which originates from the difference in coupling manner between LSPPs and the localized natures of LSPPs.  相似文献   

7.
Optical sensors based on surface plasmons have attracted much attention over the past decades owing to the wealth of applications in bio‐ and chemical and gas sensing. In surface plasmon resonance sensors, a single metal layer is commonly used, but its resolution is limited because of broad resonances. In this context, we have developed a sensor chip based on a stack of metals and a dielectric, e.g. a metal‐insulator‐metal structure, consisting of a thick insulator layer sandwiched by metal layers, that exhibits a sharp resonance due to the excitation of surface plasmon polaritons hybrid modes. We have performed both experiments and theoretical simulations to estimate the enhancement of the sensitivity of such a structure. By changing the refractive index of an aqueous solution of glucose on top of the sensor chip, we found that the use of a metal‐insulator‐metal structure improves the figure of merit of the sensor 7.5 times compared to that of a conventional surface plasmon resonance sensor chip.  相似文献   

8.
The fluorescence characteristics of 8-hydroxyquinoline derivative complexes of A1(III), Ga(III), In(III), Zn(II), and Be(II) in differently charged micellar media are reported. For most of the chelates studied, large increases are observed in micellar media compared with those obtained in hydroorganic solvents. However, some exceptions are observed, of which the low fluorescence of Zn(II) chelates in anionic sodium lauryl sulfate media is the most noticeable.  相似文献   

9.
The results of first principles electronic structure calculations for the metallic rutile and the insulating monoclinic phase of vanadium dioxide are presented. In addition, the insulating phase is investigated for the first time. The density functional calculations allow for a consistent understanding of all three phases. In the rutile phase metallic conductivity is carried by metal orbitals, which fall into the one‐dimensional band, and the isotropically dispersing bands. Hybridization of both types of bands is weak. In the phase splitting of the band due to metal‐metal dimerization and upshift of the bands due to increased pd overlap lead to an effective separation of both types of bands. Despite incomplete opening of the optical band gap due to the shortcomings of the local density approximation, the metal‐insulator transition can be understood as a Peierls‐like instability of the band in an embedding background of electrons. In the phase, the metal‐insulator transition arises as a combined embedded Peierls‐like and antiferromagnetic instability. The results for VO2 fit into the general scenario of an instability of the rutile‐type transition‐metal dioxides at the beginning of the d series towards dimerization or antiferromagnetic ordering within the characteristic metal chains. This scenario was successfully applied before to MoO2 and NbO2. In the compounds, the and bands can be completely separated, which leads to the observed metal‐insulator transitions.  相似文献   

10.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
We have been able to observe the surface‐enhanced Raman scattering (SERS) from 4‐mercaptopyridine (4‐Mpy) molecules adsorbed on ZnO nanocrystals, which display 103 enhancement factors (EFs). An excitation wavelength‐dependent behavior is clearly observed. Another molecule BVPP is also observed to have surface‐enhanced Raman signals. The chemical enhancement is most likely responsible for the observed enhancement, since plasmon resonances are ruled out. The research is important not only for a better understanding of the SERS mechanism, but also for extension of the application of Raman spectroscopy to a variety of adsorption problems on a semiconductor surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
天线共振子模型是在研究表面增强拉曼散射增强机理过程中提出的理论.作为一项非常具有代表意义的工作,文章利用天线共振子模型计算了吡啶分子1010 cm-1特征振动模在过渡金属Fe,Co,Ni衬底上的表面增强拉曼散射增强因子:给出了共振时三种金属增强因子与激发光能量的依赖关系;研究了它们的表面粗糙度对增强因子的影响,计算了能量为0.89 eV的入射光在不同表面粗糙度的三种金属衬底上的增强因子.计算结果表明,它们在可见光范围增强因子不大,这与已报道的实验结果一致;但在红外波长却有大的增强因子,可以达到104~107,有待实验检验.  相似文献   

13.
本文主要报告了本研究小组自八十年代末至今应用SERS效应对电极/非水溶液界面现象进行研究的一些结果。研究电极从具有强SERS效应的金、银、铜等贵金属,拓宽至铁、镍、铂等过渡金属。借助非水体系SERS的特殊性,我们主要开展了非水体系中溶剂的界面特性、溶质的表面吸附及表面化学反应如C1分子在铂族金属表面的解离反应等研究。此外,对作为非水体系中无法彻底去除的水分子的表面吸附模型也进行了较详细的研究。  相似文献   

14.
贺梦冬  马旺国  王新军 《中国物理 B》2013,22(11):114201-114201
In this paper,we reveal that the enhanced transmission through a perforated metal film can be further boosted up by a V-shaped nanoslit,which consists of two connected oblique slits.The maximum transmission at resonance can be enhanced significantly by 71.5%in comparison with the corresponding vertical slit with the same exit width.The value and position of transmission resonance peak strongly depend on the apex angle of the V-shaped slit.The optimum apex angle,at which the transmission is maximal,is sensitive to the slit width.Such phenomena can be well explained by a concrete picture in which the incident wave drives free electrons on the slit walls.Moreover,we also simply analyze the splitting of the transmission peak in the symmetry broken V-shaped slit,originating from the resonances of different parts of the V-shaped slit.We expect that our findings will be used to design the nanoscale light sources based on the metal nanoslit structures.  相似文献   

15.
16.
The pH‐dependent surface‐enhanced Raman scattering (SERS) of 1,2,4‐triazole adsorbed on silver electrode and normal Raman (NR) spectra of this compound in the aqueous solutions were investigated. The observed bands in the NR and SERS spectra were assigned with the help of density functional theory calculations for model molecules in the neutral, anionic, and cationic forms and their complexes with silver. The Raman wavenumbers and intensities were computed at the optimized molecular geometry. Vibrational assignments of the SERS and NR spectra are provided by calculated potential energy distributions. The combination of experimental SERS results and density functional theory calculations provide an insight into the molecular structure of adlayers formed by 1,2,4‐triazole on a silver surface at varying pH values and enable the determination of molecular orientation with respect to the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Thiacloprid is a widely used pesticide belonging to the neonicotinoid class, which is characterized by a selective activity against insects and a reduced acute toxicity for humans. The importance of the environmental impact of neonicotinoids is being intensively researched, in order to evaluate the danger they pose for useful insects. Physical methods which allow the characterization of neonicotinoids in diluted aqueous solutions are therefore desirable. We present a study of Raman and surface‐enhanced Raman scattering (SERS) spectroscopy on thiacloprid in solid state, in acetone solution, and adsorbed onto silver and gold hydrosols at μM concentration. Density functional theory calculations allow the individualization of the most stable molecular structure, both in gas phase and in solution, and of the corresponding Raman spectra. The vibrational assignments lead to an interpretation of the differences between SERS and ordinary Raman spectra based on the possible interactions between the molecule and the metal surface, the main one involving the iminocyano group. Formation of a charge‐transfer complex is suggested by the dependence of the SERS spectra on the laser excitation wavelength. We evaluate the applicability of SERS spectroscopy to the chemical analysis of thiacloprid comparing SERS with current analytical methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
We show that the increase of surface‐enhanced hyper‐Raman scattering (SEHRS) intensity of organic dye molecules adsorbed on single silver (Ag) colloid aggregate in the presence of halide ions is a direct evidence of the chemical effect in the enhancement mechanism. Time‐dependent SEHRS measurements before and after adding halide ions enabled us to distinctly observe the chemical effect. The presence of the halide ions results to a more stable chemical interaction between metal and dye molecule, making it more resistant against photodegradation effects. This study can contribute in elucidating the chemical effect mechanism and aid in the development of SEHRS as a useful spectroscopic tool. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The surface‐enhanced Raman scattering (SERS) of sodium alginates and their hetero‐ and homopolymeric fractions obtained from four seaweeds of the Chilean coast was studied. Alginic acid is a copolymer of β‐D ‐mannuronic acid (M) and α‐L guluronic acid (G), linked 1 → 4, forming two homopolymeric fractions (MM and GG) and a heteropolymeric fraction (MG). The SERS spectra were registered on silver colloid with the 632.8 nm line of a He Ne laser. The SERS spectra of sodium alginate and the polyguluronate fraction present various carboxylate bands which are probably due to the coexistence of different molecular conformations. SERS allows to differentiate the hetero‐ and homopolymeric fractions of alginic acid by characteristic bands. In the fingerprint region, all the poly‐D ‐mannuronate samples present a band around 946 cm−1 assigned to C O stretching, and C C H and C O H deformation vibrations, a band at 863 cm−1 assigned to deformation vibration of β‐C1 H group, and one at 799–788 cm−1 due to the contributions of various vibration modes. Poly‐L ‐guluronate spectra show three characteristic bands, at 928–913 cm−1 assigned to symmetric stretching vibration of C O C group, at 890–889 cm−1 due to C C H, skeletal C C, and C O vibrations, and at 797 cm−1 assigned to α C1 H deformation vibration. The heteropolymeric fractions present two characteristic bands in the region with the more important one being an intense band at 730 cm−1 due to ring breathing vibration mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Charge transfer (CT) complexes of p-benzoquinone derivatives with Indolyldiene aniline derivatives have been prepared and investigated by Elemental analysis, IR, 1H-NMR and electronic absorption spectroscopy. The spectral changes revealed that acidic acceptors form complexes with π - π? electronic interaction and proton transfer while non-acidic acceptors yield complexes having π - π transition only. The formation of 1:2 (D:A) complexes is also ascertained. The ionization potential and electron affinity are determined from the electronic absorption spectra for both the donors and acceptors respectivily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号