首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radical copolymerizations of 2‐isothiocyanatoethyl methacrylate (ITEMA) and 2‐hydroxyethyl methacrylate (HEMA) or methacrylic acid (MAA) were examined, and fundamental properties of the obtained copolymers were investigated. The copolymerizations of various ITEMA/HEMA or ITEMA/MAA compositions proceeded effectively in THF or DMF by using 2,2′‐azobisbutyronitrile (AIBN) as an initiator, keeping the isothiocyanato groups and hydroxyl or carboxyl groups unchanged. Glass transition temperatures (Tg)s of poly(ITEMA‐co‐HEMA)s ranged from 68 to 100 °C, and they were thermally stable up to 200 °C. Meanwhile, Tgs of poly(ITEMA‐co‐MAA)s (ITEMA/MAA = 91/9, 76/24) were determined to be 91 and 109 °C, respectively. However, poly(ITEMA‐co‐MAA)s were thermally unstable, and significant weight loss was observed around 180 °C, which may be due to an addition of carboxyl groups to isothiocyanato groups followed by an elimination of COS to form amide structure in the copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5221–5229  相似文献   

2.
Novel methacrylate and acrylate monomers having an isothiocyanate structure, 2‐isothiocyanatoethyl methacrylate (ITEMA) and 2‐isothiocyanatoethyl acrylate (ITEA), were synthesized, and their radical polymerizations were examined, respectively. ITEMA and ITEA were synthesized by addition of carbon disulfide to 2‐aminoethyl methacryrate or 2‐aminoethyl acrylate, followed by treatment with ethyl chloroformate. Radical polymerizations of the obtained monomers ( ITEMA , ITEA ) were carried out methyl ethyl ketone using 2,2'‐azobisisobutyronitrile (AIBN) as an initiator to obtain the corresponding polymers. The glass transition temperatures of the poly‐ITEMA and poly‐ITEA were determined to be 55 and 2 °C by differential scanning calorimetry, respectively. The 5 wt % decomposition temperatures of the poly‐ITEMA and poly‐ITEA were determined to be 277 and 269 °C by thermogravimetric analysis, respectively. Isothiocyanato groups in the monomers did not react with water in acetone solution at 60 °C for 24 h to be tolerable to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4522–4529  相似文献   

3.
A series of ABx‐type triarylphosphine oxide monomers, bis‐(4‐fluorophenyl)‐(4‐hydroxyphenyl)phosphine oxide ( 4a ), bis‐(3,4‐difluorophenyl)‐(4‐hydroxyphenyl)phosphine oxide ( 4b ), and 4‐hydroxyphenyl‐bis‐(3,4,5‐trifluorophenyl)phosphine oxide ( 4c ) were prepared, characterized, and polymerized under nucleophilic aromatic substitution conditions [N‐methylpyrrolidone (NMP), K2CO3] to provide the corresponding hyperbranched poly(arylene ether phosphine oxide)s with number‐average molecular weights ranging from 9200 to 14,600 Da. NMR spectroscopic analysis indicated the presence of highly branched products with an approximate degree of branching of 0.57. The polymers were soluble in a variety of typical organic solvents and displayed excellent thermal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1456–1467, 2002  相似文献   

4.
Fluorine‐containing poly(aryl ether 1,3,4‐ozadiazole)s were synthesized by the nucleophilic aromatic substitution reaction of 2,5‐bis(2,3,4,5,6‐pentafluorophenyl)‐1,3,4‐oxadiazole and various bisphenols in the presence of potassium carbonate. The polymerizations were carried out at 30 °C in 1‐methyl‐2‐pyrrolidinone to avoid the gelation caused by a crosslinking reaction at para and ortho carbons to the 1,3,4‐oxidiazole ring. The obtained polymers were all para‐connected linear structures. The obtained fluorine‐containing poly(aryl ether 1,3,4‐ozadiazole)s showed excellent solubility and afforded tough, transparent films by the solution‐casting method. They also exhibited a high glass transition temperature depending on the molecular structure, and the glass transition temperature could be controlled by the bisphenols in the range of 157–257 °C. They showed good thermal stability and excellent hydrophobicity due to the incorporation of the 2,3,5,6‐tetrafluoro‐1,4‐phenylene moiety. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2855–2866, 2007  相似文献   

5.
Poly(vinylene arsine)s with no aromatic substituent ([? CH?CR? AsMe? ]n) were prepared through a radical alternating copolymerization of acetylenic compounds having an alkyl substituent with an organoarsenic homocycle as an arsenic‐atomic biradical equivalent. The radical reaction between 1‐octyne and pentamethylcyclopentaarsine, with a catalytic amount of 2,2′‐azobisisobutyronitrile without a solvent (60 °C, 10 h), produced the corresponding poly(vinylene arsine)s (45% yield). The copolymers obtained were soluble in tetrahydrofuran, chloroform, hexane, and so on. The copolymers were characterized with 1H and 13C NMR spectra. The number‐average molecular weights of the copolymers were estimated with gel permeation chromatography (chloroform and polystyrene standards) to be 6500. The copolymers showed an emission property attributable to the n–π* transition in the main chain. Irradiation by an incandescent lamp of a mixture of 1‐octyne and 1 also produced poly(vinylene arsine)s. The conversion rate of 1‐octyne during the copolymerization with 2,2′‐azobisisobutyronitrile was measured with gas chromatography analysis and was found to be much slower than that of phenylacetylene. A radical terpolymerization of cyclo‐(AsMe)5 with 1‐octyne and styrene was carried out to yield the terpolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3604–3611, 2004  相似文献   

6.
A method for the preparation of poly(aryl ether thianthrene)s has been developed in which the aryl ether linkage is generated in the polymer‐forming reaction. The thianthrene heterocycle is sufficiently electron‐withdrawing to allow fluoro displacement with phenoxides by nucleophilic aromatic substitution. The monomer for this reaction, 2,7‐difluorothianthrene, can be synthesized in a moderate yield by a simple reaction sequence. Semiempirical calculations at the PM3 level suggest that 2,7‐difluorothianthrene is sufficiently activated, whereas NMR spectroscopy (1H and 13C) indicates that the monomer is only slightly activated or (19F) not sufficiently activated for nucleophilic aromatic substitution. Model reactions with p‐cresol have demonstrated that the fluorine atoms on 2,7‐difluorothianthrene are readily displaced by phenoxides in high yields, and the process has been deemed suitable for polymer‐forming reactions. High‐molecular‐weight polymers have been produced from bisphenol A, bisphenol AF, and 4,4′‐biphenol. The polymers have been characterized with gel permeation chromatography, NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The glass‐transition temperatures for the polymers of different compositions and molecular weights range from 138 to 181 °C, and all the polymers have shown high thermooxidative stability, with 5% weight loss values in an air environment approaching 500 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6353–6363, 2004  相似文献   

7.
This study is aimed at investigating the microbiocidal potential of amino‐functionalized poly(norbornenes) in the solid state. A series of norbornene‐type monomers that carry secondary or tertiary amine functions as well as hexyl and dodecyl groups were prepared. Ring‐opening metathesis polymerization was used to prepare homopolymers of the amine bearing monomers and random copolymers of amine‐ and alkyl‐substituted monomers of high average molar mass. The resulting polymers were characterized by nuclear magnetic resonance, thermogravimetry, differential scanning calorimetry, infrared spectroscopy, and contact angle measurements, and their contact biocidal potential was evaluated according to the Japanese Industry standard Z2801. Tested microorganisms comprised Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus niger. Microbiocidal activity of selected polymer films against E. coli, S. aureus, and A. niger was found, whereas against C. albicans and P. aeruginosa microbiostatic behavior was observed. Moreover, the most potent copolymer revealed no cytotoxicity rendering a biocidal polymer with potential applications in mammalian‐, and in particular, human‐related fields. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
We have used Grignard metathesis polymerization to prepare poly(3‐hexylthiophene)‐based copolymers containing electron‐withdrawing 4‐tert‐butylphenyl‐1,3,4‐oxadiazole‐phenyl moieties as side chains. We characterized these copolymers using 1H and 13C nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The band gap energy of copolymer was determined from the onset of the optical absorption. The quenching effects were observed in the photoluminescence spectra of the copolymers incorporating pendant electron‐deficient 1,3,4‐oxadiazole moieties on the side chains. The photocurrents of devices were enhanced in the presence of an optimal amount of the 1,3,4‐oxadiazole moieties, thereby leading to improved power conversion efficiencies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3331–3339, 2010  相似文献   

9.
Hydrosilylation polymerizations of 1,1‐dimethyl‐2,5‐bis(4‐ethynylphenyl)‐3,4‐diphenylsilole with aromatic silylhydrides including 1,4‐bis(dimethylsilyl)benzene, 4,4′‐bis(dimethylsilyl)biphenyl, 2,5‐bis(dimethylsilyl)thiophene, and 2,7‐bis(dimethylsilyl)‐9,9‐dihexylfluorene in the presence of Rh(PPh3)3Cl catalyst in refluxed tetrahydrofuran afford a series of silole‐containing poly(silylenevinylene)s. Under optimum condition, the alkyne polyhydrosilylation reactions progress efficiently and regioselectively, yielding polymers with high molecular weights (Mw up to 95,300) and good stereoregularity (E content close to 99%) in high yields (up to 92%). The polymers are processable and thermally stable, with high decomposition temperatures in the range of 420?449 °C corresponding to 5% weight loss. They are weakly fluorescent in the solution state but become emissive in the aggregate and film states, demonstrating their aggregation‐enhanced emission characteristics. The explosive sensing capabilities of the polymers are examined in both solution and aggregate states. The emissions of the polymers aggregates in aqueous mixture are quenched more efficiently by picric acid in an exponential pattern with high quenching constants (up to 27,949 L mol?1), suggesting that the polymers aggregates are sensitive chemosensors for explosive detection. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The development of synthetic routes which lead to five new diisocyanide monomers with one or two phenolic groups is described. Their polymerization behavior is studied with Pd‐ and Ni‐based initiators, as well as under microwave irradiation. The polymerizability is mainly dominated by steric effects as is concluded from experiments using different protecting groups. Chiroptical properties of these new polymers are studied by CD‐spectroscopy. After deprotection, helically chiral poly(quinoxalin‐2,3‐diyl)s are obtained which display a Brønsted function attached to a stereolabile biaryl axis whose configuration should be influenced by the chiral polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1320–1329  相似文献   

11.
The reaction of phenyl propynyl ether and diphenyl disulfide in the presence of 1 mol % tetrakis(triphenylphosphine)palladium as a model reaction of the polymerization of bis(4‐prop‐2‐ynyloxyphenyl) disulfide ( 1a ) gave a Z‐substituted dithioalkene. No E‐substituted dithioalkene was formed in this reaction. The palladium‐catalyzed bisthiolation polymerization of a diethynyl disulfide derivative, 1a , in benzene, was carried out to give a hyperbranched polymer ( 5a ) containing a Z‐substituted dithioalkene unit after reaction for 4 h at 70 °C. From the gel permeation chromatography analysis (chloroform, PSt standards), the number‐average and weight‐average molecular weights of 5a were found to be 8,100 and 57,000, respectively. The structure of 5a was confirmed by 1H and 13C NMR spectra. The obtained polymer was soluble in common organic solvents such as benzene, acetone, and CHCl3. Polymerization for more than 5 h gave insoluble products. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3580–3587, 2007  相似文献   

12.
We describe the synthesis of biotin end functionalized poly(sulfonic acid)s via living radical polymerization (LRP) for conjugation to Avidin. Quartz crystal microbalance (QCM‐D) and competitive binding studies were used to confirm this conjugation. A biotin initiator for copper‐mediated LRP was used to provide acrylamide and methacrylate based polymers with the functional end group. This investigation revealed that 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid was not a suitable monomer in its acid form but was successfully used in its sodium salt form. A second monomer, 3‐sulfopropylmethacrylate as the potassium salt was also studied and both monomers produced polymers with polydispersities <1.3 and 1.4, respectively. Evolution of molecular weight with respect to time indicated that the polymerization of the acrylamide polymer is controlled. Quartz crystal microbalance with dissipation monitoring was used to confirm that the biotinylated polymers were able to bind to Avidin in situ. The gold surface of a quartz crystal was chemically modified resulting in a stable monolayer of Avidin; the biotinylated polymers were passed over the functionalized surface and their grafting ability was examined. A competitive binding evaluation was undertaken with 2‐(4‐hydroxyphenylazo)benzoic acid (HABA) dye to provide visual verification of conjugation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Poly(thianthrene phenylene sulfide) and poly(thianthrene sulfide) have been prepared by nucleophilic aromatic substitution polymerization of the activated monomer 2,7‐difluorothianthrene with bis thiophenoxide and sulfide nucleophiles, respectively. The resulting polymers are thermally stable, amorphous materials that have been characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), matrix‐assisted laser desorption/ionization‐time‐of‐flight (MALDI‐TOF) mass spectrometry, UV‐Vis spectroscopy, refractometry, and intrinsic viscosity (IV) measurements. The polymers produced exhibit 5% weight loss values approaching 500 °C in inert and air atmospheres and glass transition temperatures that range from 149 to 210 °C. Poly(thianthrene phenylene sulfide) with a number average molecular weight of 22,100 g/mol has been synthesized with an IV in DMPU of 0.62 dL/g at 30 °C. Creasable films of this polymer have been prepared by solvent casting and melt pressing at 250 °C. Films of poly(thianthrene phenylene sulfide) exhibit transparencies greater than 50% at wavelengths exceeding 400 nm and a high refractive index value of 1.692 at a wavelength of 633 nm, making the polymer interesting for optical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2453–2461, 2009  相似文献   

15.
The functionalization of anionically polymerized isoprene with cysteamine applying the thiol‐ene reaction is reported. Antimicrobial activity is implemented by quaternization of the amino functionality by either alkylation or by protonation. The resulting polymers were tested against Gram‐positive as well as Gram‐negative bacteria strains according to the Japanese Industrial Standard Z2801:2000 protocol, partly revealing excellent biocidal performance. Thermal stability up to 200°C allows extrusion processing of the functionalized poly(isoprene)s. The best performing polymer, that is, bearing butylated ammonium‐groups, was compounded with the commodity material poly(propylene). The compound bearing 5 wt % of the biocidal polymer exhibited satisfactory biocidal properties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Polymers containing thiol‐reactive maleimide groups on their side chains have been synthesized by utilization of a novel methacrylate monomer containing a masked maleimide. Diels‐Alder reaction between furan and maleimide was adapted for the protection of the reactive maleimide double bond prior to polymerization. AIBN initiated free radical polymerization was utilized for synthesis of copolymers containing masked maleimide groups. No unmasking of the maleimide group was evident under the polymerization conditions. The maleimide groups in the side chain of the polymers were unmasked into their reactive form by utilization of retro Diels‐Alder reaction. This cycloreversion was monitored by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and 1H and 13C NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4545–4551, 2007  相似文献   

17.
A series of blue‐light‐emitting oligo(fluorenyleneethynylenesilylene)s (OFESs) of the general formula HC?CRC?C(EC?CRC?C)mEC?CRC?CH (E = SiPh2, SiMe2, or SiMe2? SiMe2; m = 0–2; R = 9,9‐dihexylfluorene‐2,7‐diyl) and their phosphorescent platinum‐containing oligoynes and polyynes were synthesized and characterized. The solution properties and regiochemical structures of this new structural class of organosilicon‐based polyplatinayne polymers {trans‐[? Pt(PBu3)2C ?CRC?C(EC?CRC?C)mEC?CRC?C? ]n} were studied with IR and NMR (1H, 13C, 29Si, and 31P) spectroscopy. The optical absorption and photoluminescence spectra of these metallopolymers were examined and compared with their discrete oligomeric model complexes. Our studies led to a novel approach of using the sp3‐silyl moiety as a conjugation interrupter to limit the effective conjugation length in metal polyynes, which could boost the phosphorescence decay rates essential for light‐energy harvesting from the triplet excited state. The influence of the heavy platinum atom and the group 14 silyl unit possessing different side‐group substituents on the thermal and phosphorescence properties was investigated in detail. We also established the goal of studying the evolution of the lowest singlet and triplet excited states with chain length m of OFESs and the nature of E in these metallopolymers. This work indicated that the phosphorescence emission efficiency harnessed through the heavy‐atom effect of platinum in the main chain did not change very much with oligomer chain length m but generally decreased with the E group in the order SiMe2 > SiMe2? SiMe2 > SiPh2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4804–4824, 2006  相似文献   

18.
Highly efficient syntheses of poly(alkyl methacrylate)-based brush polymers were accomplished via a facile group transfer polymerization (GTP) and a consecutive grafting-through ring-opening metathesis polymerization. The GTP system, composed of the norbornenyl-methyl trimethylsilyl ketene acetal initiator and the N-(trimethylsilyl) bis(trifluoromethanesulfonyl)imide catalyst, rapidly and quantitatively generates norbornenyl-terminated poly(alkyl methacrylate) macromonomers with very narrow polydispersities (Mw/Mn < 1.10). The ring-opening metathesis polymerization of methacrylate macromonomers using Grubbs third generation catalyst successfully generated a group of methacrylate-based brush polymers, which assured the high quality of the macromonomers obtained from GTP.  相似文献   

19.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Two novel poly(amine‐hydrazide)s were prepared from the polycondensation reactions of the dicarboxylic acid, 9‐[N,N‐di(4‐carboxyphenyl)amino]anthracene ( 1 ), with terephthalic dihydrazide ( TPH ) and isophthalic dihydrazide ( IPH ) via the Yamazaki phosphorylation reaction, respectively. The poly(amine‐hydrazide)s were readily soluble in many common organic solvents and could be solution cast into transparent films. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass‐transition temperatures (Tg) in the range of 182–230 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s had useful levels of thermal stability associated with high Tg (263–318 °C), 10% weight‐loss temperatures in excess of 500 °C, and char yield at 800 °C in nitrogen higher than 55%. These organo‐soluble anthrylamine‐based poly(amine‐hydrazide)s and poly (amine‐1,3,4‐oxadiazole)s exhibited maximum UV‐vis absorption at 346–349 and 379–388 nm in N‐methyl‐2‐pyrrolidone (NMP) solution, respectively. Their photoluminescence spectra in NMP solution showed maximum bands around 490–497 nm in the green region. The poly(amine‐hydrazide) I ‐ IPH showed a green photoluminescence at 490 nm with PL quantum yield of 29.9% and 17.0% in NMP solution and film state, respectively. The anthrylamine‐based poly(amine‐1,3,4‐oxadiazole)s revealed a electrochromic characteristics with changing color from the pale yellow neutral form to the red reduced form when scanning potentials negatively from 0.00 to ?2.20 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1584–1594, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号