首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Spinel MnCo2O4 nanoparticles on nitrogen‐doped reduced graphene oxide (MnCo2O4/NGr) are synthesized for advanced zinc–air batteries with remarkable cyclic efficiency and stability. The synthesized MnCo2O4/NGr exhibits good oxygen‐reduction reaction (ORR) activity with half‐wave potential E 1/2 of 0.85 V (vs reversible hydrogen electrode (RHE)), comparable to commercial Pt/C with E 1/2 of 0.88 V (vs RHE) along with superior oxygen electrode activity ΔE = 0.91 V for the ORR/OER (oxygen‐evolution reaction) in alkaline media. Durability tests confirm that MnCo2O4/NGr is more stable than Pt/C in alkaline environment. MnCo2O4/NGr functions with stable discharge profile of 1.2 V at 20 mA cm?2, large discharge capacity of 707 mAh g?1Zn at 40 mA cm?2 and a high energy density of 813 Wh kg?1Zn in a mechanically rechargeable zinc–air battery. The electrically rechargeable MnCo2O4/NGr zinc–air battery displays hybrid behavior with both Faradaic and oxygen redox charge–discharge characteristics, operating at higher voltage and providing higher power density and excellent cyclic efficiency of 86% for over 100 cycles compared to Pt/C with efficiency of around 60%. Moreover, hybrid zinc–air battery operates with a stable and energy efficient profile at different current densities.  相似文献   

2.
Binding of Mg2+, Ca2+, Zn2+, and Cu+ metal ions with 2′‐deoxythymidine (dT) nucleoside was studied using a density functional theory method and a 6‐311++G(d,p) basis set. This work demonstrated that the interaction of dT with these cations is tri‐coordinated η (O2, O4′, O5′). Among the four types of cations, Zn2+ cation exhibited the most tendency to interact with the dT. Cations via their interaction with dT can affect the N‐glycosidic bond length, the values of pseudorotation of the sugar ring, the orientation of the base unit with respect to the sugar ring, and the acidity of the O5′H, O3′H, and N3H groups in the dT nucleoside. Natural bond orbital analysis was performed to calculate the charge transfer and natural population analysis of the complexes. Quantum theory of atoms in molecules was also applied to determine the nature of interactions. It was shown that in dT–Mg2+ and dT–Ca2+ complexes, the bonds are electrostatic (closed‐shell) interactions, although they are partially covalent and partially electrostatic interactions in dT–Zn2+ and dT–Cu+ complexes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A highly selective and sensitive method is developed for colorimetric detection of melamine using gold nanoparticles (AuNPs) functionalized with p-chlorobenzenesulfonic acid. The addition of melamine induced the aggregation of AuNPs, as evidenced from the morphological characterizations and the color changed from red wine to blue, which could also be monitored by the UV–visible spectrometer and even naked eyes. This process caused a significant increase in the absorbance ratio (A650nm/A520nm) of p-chlorobenzenesulfonic acid–AuNPs. Under optimized conditions, the system exhibited a linear response to melamine in the range of 6.0 × 10?7–1.5 × 10?6 mol L?1 with a correlation coefficient of 0.997, and the limit of detection can even be 2.3 nM, which was much lower than some other methods and the safe limits (20 μM in both the USA and EU, 8.0 μM for infant formula in China, 1.2 μM in the CAC (Codex Alimentarius Commission) review for melamine in liquid infant formula). More importantly, the developed method presented excellent tolerance to coexisting common metal ions such as Ca2+, Zn2+, whose concentration is 1000 times of melamine, so that it had been applied to the analysis of melamine in liquid milk and milk powder with the recovery of 97.0–101 % and 100–103 %, respectively, indicating that the proposed method is quite a highly effective means to determine melamine in milk products.  相似文献   

4.
Here, a controlled synthesis of remarkable 3D photocatalysts is presented that is composed of ultrahigh‐density unaggregated plasmonic Au nanoparticles (AuNPs) chemically bound to vertically aligned ZnO nanorod arrays (ZNA) through bifunctional molecular linkers. Experimental probes and electromagnetic simulations of electron transfer and localized plasmonic coupling processes are exploited to gain insight into the underlying light‐irradiation‐induced interactions in the 3D ZNA–AuNPs photocatalysts. Highly dense AuNPs on ZNA surfaces act as sinks for the storage of UV‐generated electrons, which promote the separation of charge carriers and create numerous photocatalytic reaction centers. Furthermore, 3D finite‐difference time domain simulation indicates that significant visible light confinement and enhancement around the ZNA–AuNPs interfacial plasmon “hot spots” contribute to efficient conversion of light energy to electron‐hole pairs. Significantly, in comparison with the bare ZNA, the 10‐nm‐sized AuNPs‐decorated ZNA exhibits 10.6‐fold enhanced photoreaction rate in the entire UV–vis region. Moreover, various novel hybrid structures based on the plasmonic AuNPs and diverse nanostructures (films, powdered nanorods, mesoporous, and nanotubes) or functional materials (multiferroic BiFeO3, CuInGaSe2 absorber layers, and photoactive TiO2) are successfully constructed using the present synthesis methodology. It may stimulate the progress in materials science toward the synthesis of multifunctional plasmonic heterostructures or devices.  相似文献   

5.
The early stages of methane, ethane and propane conversion were studied by in situ 1H and 13C MAS NMR techniques over fully exchanged Zn2+/MFI catalyst obtained by the reaction with zinc vapour. The in situ techniques revealed strong interaction of alkanes with Zn2+ cations evidenced by significant shift of the corresponding NMR lines. Besides that, the formation of methyl zinc, ethyl zinc and n-propyl zinc species along with bridging and silanol surface OH-groups was detected already at the ambient temperature. These results pointed to dissociative adsorption of alkanes over (ZO)–Zn2+–(OZ) and (ZO)–Zn2+–(OSi) active sites of the catalyst. The dissociative adsorption was shown to be a dead-end surface reaction in the case of methane starting reactant, while in the case of ethane and propane, it appeared to be responsible for the initiation of the catalytic cycle leading to alkenes and dihydrogen formation and regeneration of zinc containing catalytic sites.  相似文献   

6.
A nanosensor, based on 8-hydroxyquinoline functionalized graphene oxide, was developed for the fluorescence detection of Zn2+. It showed high selectivity and sensitivity for Zn2+ion in aqueous solution over other metal ions such as Li+, Na+, Ca2+, Mg2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Ni2+, Pb2+, Fe2+, Fe3+and Cr3+. Due to the linearity of the emission intensity toward Zn2+ concentration, fluorescent technique could be used for the detection of Zn2+ ion even at very low concentrations.  相似文献   

7.
Nanocrystalline Mn‐doped zinc oxides Zn1−xMnxO (x = 0–0.10) were synthesized by the sol–gel technique at low temperature. The calcination temperature of the as‐prepared powder was found at 350 °C using differential thermal analysis. A thermogravimetric analysis showed that there is a mass loss in the as‐prepared powder till 350 °C and an almost constant mass till 800 °C. The X‐ray diffraction patterns of investigated nanopowders calcined at 350 °C correspond to the hexagonal ZnO structure without any foreign impurities. The average grain size of the nanocrystal that was observed around ∼25–40 nm from transmission electron microscopy matched well with the crystallite size calculated from the line shape of X‐ray diffraction. The chemical bonding structure in Zn1−xMnxO nanopowders was examined using X‐ray photoelectron spectroscopy techniques, which indicate substitution of Mn2+ ions into Zn2+ sites in ZnO lattice. Micro Raman spectroscopy confirmed the insertion of Mn ions in the ZnO host matrix, and similar wurtzite structure of Zn1−xMnxO (x < 10%) nanocrystals. Temperature‐dependent Raman spectra of the nanocrystals displayed suppression of luminescence and enhancement in full width at half maximum in pure ZnO nanocrystals with increase in temperature, which suggests an enhancement in particle size at elevated temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The design of novel, functionalized bis‐metaphenylene semiquinone (SQ) ligands and their corresponding metal complexes which combine conformational flexibility and electron‐withdrawing, electron‐donating, and conjugating substituents enable investigation of multiple structure–property relationships. Along these lines, we report the synthesis of three new bis(ZnII(SQ)TpCum,Me) complexes containing the bis‐metaphenylene coupling fragment. Using electron paramagnetic resonance spectroscopy, ab initio computations and superconducting quantum interference device magnetometry, we show how spin‐density is affected by the bis‐metaphenylene system substituents. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We have performed density functional theory (DFT) calculations in order to study the gas‐phase interaction of oxo‐ and thio‐oxazolidine derivatives with Zn2+. The calculations were performed at B3LYP/6‐311+(2df,2p) level of theory. It has been found, in all cases, that the direct association of Zn2+ with the carbonyl and thiocarbonyl groups takes place at the heteroatom attached to position 2 irrespective of its nature. This preference has been attributed to the resonance effects caused by the nearest heteroatoms (oxygen and nitrogen). The most stable complexes correspond to structures with Zn2+ bridging between the heteroatom at position 2 or 4 of the 4‐ or 2‐enol (or the 4‐ or 2‐enethiol) tautomer and the dehydrogenated ring nitrogen atom, N3. Zn2+ association has a clear catalytic effect on the tautomerization processes which connect the oxo–thione forms with the enol–enethiol tautomers. Hence, although the enol–enethiol tautomers of oxazolidine and its thio derivatives should not be observed in the gas phase, the corresponding Zn2+ complexes are the most stable species and should be accessible, because the tautomerization barriers are smaller than the Zn2+ binding energies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Although photodynamic therapy is an efficient therapeutic strategy for cancer treatment, it always suffers from the low singlet oxygen (1O2) yields owing to the weak absorption in optical transparent window of biological tissues. Herein, the black phosphorus (BP) nanosheet is integrated with gold nanoparticles (AuNPs) to simultaneously enhance the singlet oxygen generation and hyperthermia by localized surface plasmon resonance (LSPR) in cancer therapy. In the design, BP nanosheet employed as two‐dimension (2D) inorganic photosensitizer is hybridized with AuNPs through polyetherimide (PEI) as bridge to form BP‐PEI/AuNPs hybrid nanosheet. Such hybridation not only significantly increases the 1O2 production of BP nanosheet through maximizing the local field enhancement of AuNPs, but also significantly enhances the light absorption of BP nanosheet to promote photothermal effect by LSPR. Accordingly, about 3.9‐fold enhancement of 1O2 production and 1.7‐fold increasement of photothermal conversion efficiency are achieved compared with BP‐PEI alone upon single 670 nm laser irradiation. As a proof‐of‐concept model, BP‐PEI/AuNPs hybrid nanosheet with simultaneous dual‐modal phototherapy functions result in effective suppression of tumor growth with minimized side effects both in vitro and in vivo, indicating the great potential of the BP‐PEI/AuNPs hybrid nanosheet as an effective strategy to enhance the cancer therapy efficiency.  相似文献   

11.
In this study, highly ordered mesoporous silica material (SBA-15) functionalized with N-(quinoline-8-yl)-2-(3-triethoxysilyl-propylamino)-acetamide (QTPA) as zinc probe has been reported. The anchoring to the surface of the SBA-15 was carried out by the reaction between the precursor and the hydroxyl groups available on the inner surface of the support. The primary ordered mesoporous structure of SBA-15 was well preserved after the grafting procedure. Fluorescence characterization showed that the obtained organic-inorganic hybrid composite displayed highly selective and sensitive to Zn2+ ion over other cations such as Cd2+, Pb2+, Ni2+ and Co2+. And the hybrid material has ideal chemical and spectroscopic properties for further biological and environmental applications.  相似文献   

12.
To obtain direct evidence of the formation of the Ni–Mo–S phase on NiMo/Al2O3 catalysts under high‐pressure hydrodesulfurization conditions, a high‐pressure EXAFS chamber has been constructed and used to investigate the coordination structure of Ni and Mo species on the catalysts sulfided at high pressure. The high‐pressure chamber was designed to have a low dead volume and was equipped with polybenzimidazole X‐ray windows. Ni K‐edge k3χ(k) spectra with high signal‐to‐noise ratio were obtained using this high‐pressure chamber for the NiMo/Al2O3 catalyst sulfided at 613 K and 1.1 MPa over a wide k range (39.5–146 nm?1). The formation of Ni–Mo and Mo–Ni coordination shells was successfully proved by Ni and Mo K‐edge EXAFS measurement using this chamber. Interatomic distances of these coordination shells were almost identical to those calculated from Ni K‐edge EXAFS of NiMo/C catalysts sulfided at atmospheric pressure. These results support the hypothesis that the Ni–Mo–S phase is formed on the Al2O3‐supported NiMo catalyst sulfided under high‐pressure hydrodesulfurization conditions.  相似文献   

13.
The solvation structure of magnesium, zinc(II), and alkaline earth metal ions in N,N‐dimethylformamide (DMF) and N,N‐dimethylacetamide (DMA), and their mixtures has been studied by means of Raman spectroscopy and DFT calculations. The solvation number is revealed to be 6, 7, 8, and 8 for Mg2+, Ca2+, Sr2+, and Ba2+, respectively, in both DMF and DMA. The δ (O C N) vibration of DMF shifts to a higher wavenumber upon binding to the metal ions and the shift Δν(= νbound − νfree) becomes larger, when the ionic radius of the metal ion becomes smaller. The ν (N CH3) vibration of DMA also shifts to a higher wavenumber upon binding to the metal ions. However, the shift Δν saturates for small ions, as well as the transition‐metal (II) ions, implying that steric congestion among solvent molecules takes place in the coordination sphere. It is also indicated that, despite the magnesium ion having practically the same ionic radius as the zinc(II) ion of six‐coordination, their solvation numbers in DMA are significantly different. DFT calculations for these metalsolvate clusters of varying solvation numbers revealed that not only solvent–solvent interaction through space but also the bonding nature of the metal ion plays an essential role in the steric congestion. The individual solvation number and the Raman shift Δν in DMF–DMA mixtures indicate that steric congestion is significant for the magnesium ion, but not appreciable for calcium, strontium, and barium ions, despite the solvation number of these metal ions being large. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Stability orderings of 150 stable complexes formed by metal ions (Na+, K+, Ca2+, Mg2+, and Zn2+) and 13 stable thymine tautomers in both solvent and gas phases are obtained, and the optimal binding site for a metal ion in a specific thymine tautomer is identified. Results indicate that the complex with the canonical thymine tautomer (T1) is more stable than those with the rare ones, and the monodentate complex M–T1o4(o2) are their ground‐state form in the solvent phase. The ground‐state thymine complexes bound by Ca2+, Mg2+, or Zn2+ become bidentate M–T3o4lo2,n3, which is derived from a rare thymine tautomer T3o4l, whereas those bound by Na+ and K+ are still monodentate complexes M–T1o4(o2), however, in the gas phase. The differences in stability are discussed in detail from the binding strength of metal ions, relative energy of the corresponding thymine tautomers, and solution effect. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Paramagnetic resonance of ZnSe: Fe single crystals was studied at 120 K. Parameters of the spin Hamiltonian were determined for the monoclinic dimer complex Fe3+–Cu+ and a second discovered Fe3+ center, which appears due to association of the iron ion with a K+ ion in a Zn2+ position or with a zinc vacancy. Effect of illumination of the zinc selenide samples by blue, green and red light on the paramagnetic resonance spectrum was investigated.  相似文献   

16.
Wavelength‐tunable light‐emitting diodes (LEDs) of GaxZn1–xO nanowire arrays are demonstrated by a simple modified chemical vapor deposition heteroepitaxial growth on p‐GaN substrate. As a gallium atom has similar electronegativity and ion radius to a zinc atom, high‐level Ga‐doped GaxZn1–xO nanowire arrays have been fabricated. As the x value gradually increases from 0 to 0.66, the near‐band‐edge emission peak of GaxZn1–xO nanowires shows a significant shift from 378 nm (3.28 eV) to 418 nm (2.96 eV) in room‐temperature photoluminescence (PL) measurement. Importantly, the electroluminescence (EL) emission of GaxZn1–xO nanowire arrays LED continuously shifts with a wider range (∼100 nm), from the ultraviolet (382 nm) to the visible (480 nm) spectral region. The presented work demonstrates the possibility of bandgap engineering of low‐dimensional ZnO nanowires by gallium doping and the potential application for wavelength‐tunable LEDs.  相似文献   

17.
The photoluminescence properties of a composite material prepared by the introduction of the nanosized phosphor Zn2SiO4:Mn2+ into porous anodic alumina have been investigated. Scanning electron microscopy studies have revealed that Zn2SiO4:Mn2+ particles are uniformly distributed in 70% of the volume of the pore channels. The samples exhibit an intense luminescence in the range of 2.3–3.0 eV, which corresponds to the emission of different types of F centers in alumina. After the formation of Zn2SiO4:Mn2+ nanoparticles in the pores, an intense photoluminescence band is observed at 2.4 eV due to the 4T16A1 electronic transition within the 3d shell of the Mn2+ activator ion. It has been found that the maximum of the photoluminescence of Zn2SiO4:Mn2+ xerogel nanoparticles located in the porous matrix is shifted to higher energies, and the luminescence decay time decreases significantly.  相似文献   

18.
New type photocatalytic materials of Zn2+–Ni2+–Fe3+–CO32?LDHs were prepared by complexing agent-assisted homogeneous precipitation technique and Zn(NO3)2·6H2O, Ni(NO3)·6H2O, Fe(NO3)3·9H2O used as raw materials in the case of molar ratio of Zn2+/Ni2+/Fe3+ = 1:6:2. Zn2+–Ni2+–Fe3+–CO32?LDHs having a specific surface area of 96.5 m2/g. The structure and catalytic properties of the material were systematically studied. The experimental results show that the Zn2+–Ni2+–Fe3+–CO32?LDHs has a higher adsorption performance and lower band gap which make it an excellent catalyst for reducing the degradation of the methyl orange. Study on the process of photocatalytic reaction shows that Methyl Orange was adsorbed to the layer of Zn2+–Ni2+–Fe3+–CO32?LDHs, and then it was photodecomposed to inorganic molecules and ions by Zn2+, Ni2+, and Fe3+ on the surface of Zn2+–Ni2+–Fe3+–CO32?LDHs.  相似文献   

19.
A simple ethanol sol‐based method for the synthesis of gold nanosheets (AuNSs) and gold nanoparticle‐over‐nanosheet (AuNP/NS) is developed. Gold nanoparticles (AuNPs) with average sizes of ≈8 nm are grown in situ on the surface of the AuNS, which forms a NP/NS structure that obtains strong, significantly improved, surface‐enhanced Raman spectroscopy activity with the magnitude ≈2 and ≈6 orders higher than the simplex AuNP and AuNS, respectively. This performance is mainly attributed to uniform AuNPs that are closely packed over AuNS and coupled with NP–NS and NP–NP interactions. The NP–NS–GP (the gap between NP–NS) is narrower than NP–NP–GP in which much stronger and steadier plasmon resonance is obtained that can significantly enhance the Raman signal. The results show that single‐crystalline AuNS is an ideal substrate, which can be further coated with other metallic NPs to form a new flexible, high‐activity and AuNS‐based nanocomposite for a wide variety of applications.  相似文献   

20.
Au nanoparticle (AuNP) core particles coated with a poly(N‐isopropylacrylamide) (pNIPAm) shell (Au@pNIPAm) are synthesized by seed mediated free radical polymerization. Subsequently, a temperature–light‐responsive photonic device is fabricated by sandwiching the Au@pNIPAm particles between two thin layers of Au. The optical device exhibits visual color and characteristic multipeak reflectance spectra, where peak position is primarily determined by the distance between two Au layers. Dual responsivities of the photonic device are achieved by combining the photothermal effect of AuNPs core (localized surface plasmon resonance (LSPR) effect) and the temperature responsivity of the pNIPAm shell. That is, the pNIPAm shell collapses as the temperature is increased above pNIPAm's lower critical solution temperature, either by direct heat input or heat generated by AuNPs' LSPR effect. To investigate the effect of AuNPs distribution in the microgels on the devices' photothermal responsivity, the Au@pNIPAm microgel‐based etalon devices are compared with that fabricated by AuNP‐doped pNIPAm‐based microgels; in terms of response kinetics and optical spectrum homogeneity. The uniform Au@pNIPAm microgel‐based devices show a fast response and exhibit a comparatively homogeneous spectrum over the whole slide. These materials can potentially find use in drug delivery systems, active optics, and soft robotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号