首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agents are compared in miniemulsion polymerization of styrene and butyl acrylate and the formation of seeded emulsion block copolymers. The order of block synthesis and the number of block segments per polymer are discussed. The use of nonionic surfactants is examined and the type of surfactant in relation to the monomer used is found to have a significant affect on latex formation. Conditions are shown by which AB and ABA type block copolymers can be successfully prepared via a seeded RAFT‐mediated emulsion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 588–604, 2007  相似文献   

2.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

3.
A range of well‐defined block copolymers were synthesized using 4‐cyano‐4‐(dodecylsulfanylthiocarbonyl)sulfanylpentanol (CDP) as a dual initiator for reversible addition‐fragmentation chain transfer (RAFT) polymerization and ring‐opening polymerization (ROP) in a one‐step process. Styrene, (meth)acrylate, and acrylamide monomers were polymerized in a controlled manner for one block composed of vinyl monomers, and δ‐valerolactone (VL), ε‐caprolactone (CL), trimethylene carbonate (TMC), and L ‐lactide (LA) were used for the other block composed of cyclic monomers. Diphenyl phosphate was used as a catalyst for the ROP of VL, CL, and TMC, and 4‐dimethyamino pyridine for the ROP of LA. These catalysts did not interfere with RAFT polymerization and the synthesis of various block copolymers proceeded in a controlled manner. CDP was found to be a very useful dual initiator for a one‐step synthesis of various block copolymers by a combination of RAFT polymerization and ROP. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

5.
A simple method for preparing cationic poly[(ar‐vinylbenzyl)trimethylammonium chloride)] [poly(VBTAC)] brushes was used by combined technology of “click chemistry” and reversible addition‐fragmentation chain transfer (RAFT) polymerization. Initially, silicon surfaces were modified with RAFT chain transfer agent by using a click reaction involving an azide‐modified silicon wafer and alkyne‐terminated 4‐cyanopentanoic acid dithiobenzoate (CPAD). A series of poly(VBTAC) brushes on silicon surface with different molecular weights, thicknesses, and grafting densities were then synthesized by RAFT‐mediated polymerization from the surface immobilized CPAD. The immobilization of CPAD on the silicon wafer and the subsequent polymer formation were characterized by X‐ray photoelectron spectroscopy, water contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and ellipsometry analysis. The addition of free CPAD was required for the formation of well‐defined polymer brushes, which subsequently resulted in the presence of free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. In addition, by varying the polymerization time, we were able to obtain poly(VBTAC) brushes with grafting density up to 0.78 chains/nm2 with homogeneous distributions of apparent needle‐like structures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
End group activation of polymers prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization was accomplished by conversion of thiocarbonylthio end groups to thiols and subsequent reaction with excess of a bismaleimide. Poly(N‐isopropylacrylamide) (PNIPAM) was prepared by RAFT, and subsequent aminolysis led to sulfhydryl‐terminated polymers that reacted with an excess of 1,8‐bismaleimidodiethyleneglycol to yield maleimido‐terminated macromolecules. The maleimido end groups allowed near‐quantitative coupling with model low molecular weight thiols or dienes by Michael addition or Diels‐Alder reactions, respectively. Reaction of maleimide‐activated PNIPAM with another thiol‐terminated polymer proved an efficient means of preparing block copolymers by a modular coupling approach. Successful end group functionalization of the well‐defined polymers was confirmed by combination of UV–vis, FTIR, and NMR spectroscopy and gel permeation chromatography. The general strategy proved to be versatile for the preparation of functional telechelics and modular block copolymers from RAFT‐generated (co)polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5093–5100, 2008  相似文献   

7.
Triblock copolymers of N‐vinylpyrrolidone (NVP) and polydimethylsiloxane (PDMS) were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using two different types of difunctional telechelic PDMS‐based dixanthate macroinitiators. The incorporation of PDMS into the triblock copolymers was evidenced by 1H NMR spectroscopy and varied between 4 mol % and as high as 20 mol %, dependent on reaction time and monomer conversion. The copolymer homogeneity was characterized in terms of molecular weight distribution determined by GPC to estimate the level of control over the chain length. Monomodal molecular weight distributions were observed, and 1H NMR spectroscopy indicated the copolymers had number average molecular weights (Mn) ranging between 28,000 and 160,000 g/mol. In addition, thin film phase separation and critical micelle concentrations for these copolymers were analyzed via transmission electron microscopy and surface tension measurements, respectively. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3387–3394  相似文献   

8.
The removal of thiocarbonylthio end groups by radical‐addition‐fragmentation‐ coupling from polymers synthesized by RAFT polymerization has been studied. We found that a method, which involves heating the polymer with a large excess (20 molar equivalents) of azobis(isobutyronitrile) (AIBN), while successful with methacrylic polymers, is less effective with styrenic or acrylic polymers and provides only partial end group removal. This is attributed to the propagating radicals generated from the latter polymers being poor radical leaving groups relative to the cyanoisopropyl radical. Similar use of lauroyl peroxide (LPO) completely removes the thiocarbonylthio groups from styrenic or acrylic polymers but, even with LPO in large excess, produces a polymer with a bimodal molecular weight distribution. The formation of a peak of double molecular weight is indicative of the occurrence of self‐termination and ineffective radical trapping. We now report that by use of a combination of LPO (2 molar equivalents) and AIBN (20 molar equivalents) we are able to completely remove thiocarbonylthio end groups of styrenic or acrylic polymers and minimize the occurrence of self termination. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6704–6714, 2009  相似文献   

9.
A new, efficient method for synthesizing stable nanoparticles with poly(ethylene oxide) (PEO) functionalities on the core surface, in which the micellization and crosslinking reactions occur in one pot, has been developed. First, amphiphilic PEO‐b‐PS copolymers were synthesized by reversible addition fragmentation chain transfer (RAFT) radical polymerization of styrene using (PEO)‐based trithiocarbonate as a macro‐RAFT agent. The low molecular weight PEO‐b‐PS copolymer was dissolved in isopropyl alcohol where the block copolymer self‐assembled as core‐shell micelles, and then the core‐shell interface crosslink was performed using divinylbenzene as a crosslinking agent and 2,2′‐azobisisobutyronitrile as an initiator. The design of the amphiphilic RAFT agent is critical for the successful preparation of core‐shell interface crosslinked micellar nanoparticles, because of RAFT functional groups interconnect PEO and polystyrene blocks. The PEO functionality of the nanoparticles surface was confirmed by 1H NMR and FTIR. The size and morphology of the nanoparticles was confirmed by scanning electron microscopy, transmission electron microscopy, and dynamic laser light scattering analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Reversible addition fragmentation chain transfer (RAFT) was used to synthesize methacrylic acid oligomers and oligo(methacrylic acid)‐b‐poly(methyl methacrylate) (PMAA‐b‐PMMA) with targeted degree of polymerization ≈ 10. Characterization is by size‐exclusion chromatography (SEC) and electrospray mass‐spectrometry. SEC data are presented as hydrodynamic volume distributions (HVDs), the only proper means to present comparative and meaningful SEC data when there is no unique relationship between size and molecular weight. The RAFT agent, (4‐cyanopentanoic acid)‐4‐dithiobenzoate (CPADB), produced dithiobenzoic acid as a side product during the polymerization of methacrylate derivatives. Precipitation in diethyl ether proved to be an easy way to remove this impurity from the PMAA‐RAFT oligomers. Both unpurified and purified macro‐RAFT agent were used to prepare amphiphilic PMAA‐b‐PMMA copolymers. Diblock copolymer prepared from the purified PMAA homopolymer had a narrower HVD in comparison to those obtained from the equivalent unpurified macro‐RAFT agent. This work shows that while cyanoisopropyl‐dithiobenzoate or CPADB are good RAFT agents for methacrylate derivatives, they exhibit some instability under typical polymerization conditions, and thus when oligomers are targeted, optimal control requires checking for the degradation product and appropriate purification steps when necessary (the same effect is present for larger polymers but is unimportant). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2277–2289, 2008  相似文献   

11.
12.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We demonstrate the ability of the reversible addition‐fragmentation chain transfer (RAFT) process to produce well‐defined block co‐oligomers for which each block has a narrow molecular weight distribution and degrees of polymerization ranging from 2 to 33. We exploit RAFT versatility to control the structure of the co‐oligomers and produce amphiphilic block co‐oligomers of styrene, acrylic acid and ethylene glycol. A detailed study shows that the amphiphilic diblock co‐oligomers self‐assemble in solution and form micelles or particles, depending on the hydrophobicity of the diblock. These oligomers present an excellent alternative to traditional amphiphilic molecules, by combining the properties of polymers with those of single molecule surfactants. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
In this work, we showed that the self‐assembly behavior of the macro‐chain transfer agent P(DMA69b‐NIPAM60)‐S? (C?S)? S? C12H25 [dodecyltrithiocarbonate (DTTC)] was very different to P(DMA68b‐NIPAM62)‐S? (C?S)? S? C4H9 [butyltrithiocarbonate (BTTC)], resulting in very different water‐based nanoreactor polymerizations. The DTTC diblock formed small aggregates below the lower critical solution temperature (LCST), which increased slightly above the LCST. This is in contrast to the BTTC diblock, in which unimers existed below the LCST and large aggregates of core–shell nanoreactors were present above the LCST. Polymerization of styrene in the DTTC diblock nanoreactors afforded fast rates of polymerization with the production of narrow molecular weight and particle size distributions. We found a direct relationship between the size and the targeted molecular weight; the greater the targeted the molecular weight the greater the particle size. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The preparation of carboxylic acid‐coated silica nanoparticles was investigated. A monolayer of carboxylic acid residues with controllable graft density was anchored to the nanoparticle by a ring‐opening reaction with succinic anhydride. Poly(methacrylic acid) [poly(MAA)] grafted nanoparticles were prepared via a polymerization–deprotection strategy. Tert‐butyl methacrylate was polymerized from the surface of silica nanoparticles in a predictable manner and with excellent control over the molecular weight distribution. Subsequent removal of the tert‐butyl group resulted in poly (MAA) grafted nanoparticles. The polymer nanoparticles were also functionalized with dyes, which may be useful in tracking the particles in biological systems. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Cationic and anionic amphiphilic monomers (surfmers) were synthesized and used to stabilize particles in miniemulsion polymerization. A comparative study of classical cationic and anionic surfactants and the two surfmers was conducted with respect to the reaction rates and molecular weight distributions of the formed polymers. The reversible addition–fragmentation chain transfer process was used in the miniemulsion polymerization reactions to control the molecular weight distribution. The reaction rates of the surfmer‐stabilized miniemulsion polymerization of styrene and methyl methacrylate were similar (in most cases) to those of the classical‐surfactant‐stabilized miniemulsion polymerizations. The final particle sizes were also similar for polystyrene latexes stabilized by the surfmers and classical surfactants. However, poly(methyl methacrylate) latexes stabilized by the surfmers had larger particle sizes than latexes stabilized by classical surfactants. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 427–442, 2006  相似文献   

17.
Amphiphilic block copolymers were synthesized via a dual initiator chain transfer agent (inifer) that successfully initiated the ring opening polymerization (ROP) of l -lactide (LLA) and subsequently mediated the reversible addition-fragmentation chain transfer (RAFT) polymerization of poly(ethylene glycol) ethyl ether methacrylate (PEGEEMA). The formation of each polymer block was confirmed using 1H nuclear magnetic resonance spectroscopy, as well as gel permeation chromatography, and comprehensive kinetics studies provide valuable insights into the factors influencing the synthesis of well-defined block copolymers. The effect of monomer concentration, reaction time, and molar ratios of inifer to catalyst on the ROP of LLA are discussed, as well as the ability to produce poly(lactide) blocks of different molecular weights. The synthesis of hydrophilic PPEGEEMA blocks was also monitored via kinetics to provide a better understanding of the role the chain transfer agent plays in facilitating the complex and sterically demanding RAFT polymerization of PEGEEMA.  相似文献   

18.
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008  相似文献   

19.
Solution and aqueous miniemulsion polymerizations of vinyl chloride (VC) mediated by (3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl‐2‐((ethoxycarbonothioyl)thio) propanoate) (X1) were studied. The living characters of X1‐mediated solution and miniemulsion polymerizations of VC were confirmed by polymerization kinetics. The miniemulsion polymerization exhibits higher rate than solution polymerization. Final conversions of VC in the reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization reach as high as 87% and are independent of X1 concentration. Initiation process of X1‐mediated RAFT miniemulsion polymerization is controlled by the diffusion–adsorption process of prime radicals. Due to the heterogeneity of polymerization environments and concentration fluctuation of RAFT agent in droplets or latex particles, PVCs prepared in RAFT miniemulsion exhibit relatively broad molecular weight distribution. Furthermore, chain extensions of living PVC (PVC‐X) with VC, vinyl acetate (VAc), and N‐vinylpyrrolidone (NVP) reveal that PVC‐X can be reinitiated and extended, further confirming the living nature of VC RAFT polymerization. PVC‐b‐PVAc diblock copolymer is successfully synthesized by the chain extension of PVC‐X in RAFT miniemulsion polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2092–2101  相似文献   

20.
Copolymerization of styrene and acrylonitrile was carried out via reversible addition‐fragmentation chain transfer process (RAFT) in the presence of cumyl dithiobenzoate with AIBN as initiator. Copolymerization proceeded in a controlled/“living” fashion, and the copolymer composition depended on the feed ratio of monomer pairs. Block copolymers comprising styrene and acrylonitrile (SAN) segments and various functional blocks were synthesized through chain extension using the first blocks as macromolecular chain transfer agents (macroCTAs). Since the polymerization of both blocks proceeded through the RAFT process, the resulting block copolymers exhibited relatively narrow molecular weight distribution, with polydispersity indices in the range of 1.29–1.46. Gel permeation chromatography (GPC), and 1H NMR and FTIR measurements confirmed the successful synthesis of the functionalized block copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2260–2269, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号