首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copolymerization of propylene with 1‐hexene, 1‐octene, 1‐decene, and 1‐dodecene was carried out with silica‐supported rac‐Me2Si(Ind)2ZrCl2 as a catalyst. The copolymerization activities of the homogeneous and supported catalysts and the microstructures of the resulting copolymers were compared. The activity of the supported catalyst was only one‐half to one‐eighth of that of the homogeneous catalyst, depending on the comonomer type. The supported catalyst copolymerized more comonomer into the polymer chain than the homogeneous catalyst at the same monomer feed ratio. Data of reactivity ratios showed that the depression in the activity of propylene instead of an enhancement in the activity of olefinic comonomer was responsible for this phenomenon. We also found that copolymerization with α‐olefins and supporting the metallocene on a carrier improved the stereoregularity and regioregularity of the copolymers. The melting temperature of all the copolymers decreased linearly with growing comonomer content, regardless of the comonomer type and catalyst system. Low mobility of the propagation chain in the supported catalyst was suggested as the reason for the different polymerization behaviors of the supported catalyst with the homogeneous system. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3294–3303, 2001  相似文献   

2.
The copolymerization of racemic β‐butyrolactone (rac‐BLMe) with racemic “allyl‐β‐butyrolactone” (rac‐BLallyl) in toluene, catalyzed by the discrete amino‐alkoxy‐bis(phenolate) yttrium‐amido complex 1 , gave new poly(β‐hydroxyalkanoate)s with unsaturated side chains. The poly(BLMeco‐BLallyl) copolymers produced have a highly syndiotactic backbone structure (Pr = 0.80–0.84) with a random enchainment of monomer units, as evidenced by 13C NMR, and high molecular weight (Mn up to 58,000 g mol?1) with a narrow polydispersity (Mw/Mn = 1.07–1.37), as determined by GPC. The comonomer incorporation (5–50 mol % rac‐BLallyl) was a linear function of the feed ratio. The pendant vinyl bond of the side‐chains in those poly(BLMeco‐BLallyl) copolymers allowed the effective introduction of hydroxy or epoxy groups via dihydroxylation, hydroboration‐oxidation or epoxidation reactions. NMR studies indicated that all of these transformations proceed in an essentially quantitative conversion and do not affect the macromolecular architecture. Some thermal properties (Tm, ΔHm, Tg) of the prepared polymers have been also evaluated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3177–3189, 2009  相似文献   

3.
The effect of the copolymerization temperature and amount of comonomer in the copolymerization of ethylene with 1,3‐cyclopentadiene, dicyclopentadiene, and 4‐vinyl‐1‐cyclohexene and the rac‐Et[Ind]2ZrCl2–methylaluminoxane metallocene system was studied. The amount of comonomer present in the reaction media influenced the catalytic activity. Dicyclopentadiene was the most reactive comonomer among the cyclic dienes studied. In general, copolymers synthesized at 60 °C showed higher catalytic activities. Ethylene–dicyclopentadiene copolymers with high comonomer contents (>9%) did not show melting temperatures. 1,3‐Cyclopentadiene dimerized into dicyclopentadiene during the copolymerization, giving a terpolymer of ethylene, cyclopentadiene, and dicyclopentadiene. A complete characterization of the products was carried out with 1H NMR, 13C NMR, heteronuclear chemical shift correlation, differential scanning calorimetry, and gel permeation chromatography. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 471–485, 2002; DOI 10.1002/pola.10133  相似文献   

4.
The copolymerization of propylene with 1‐octene was carried out with rac‐dimethylsilylbis(2,4,6‐trimethylindenyl)zirconium dichloride as a catalyst activated by methylaluminoxane (MAO) and an MAO/triisobutylaluminum mixture. The copolymerization conditions, including the polymerization temperature, Al/Zr molar ratio, and 1‐octene concentration in the feed, significantly influenced the catalyst activity, 1‐octene incorporation, polymer molecular weight, and melting temperature. The addition of 1‐octene to the polymerization system caused a decrease in the activity, whereas the melting temperature and intrinsic viscosity of the polymer increased. The microstructure of the propylene–1‐octene copolymer was characterized by 13C NMR, and the reactivity ratios of the copolymerization were estimated from the dyad distribution of the monomer sequences. The amount of regioirregular structures arising from 2,1‐ and 1,3‐misinserted propylene decreased as the 1‐octene content increased. The influence of the propagation chain on the polymerization mechanism is proposed to be the main reason for the changes in the reactivity ratios and regioirregularity with the polymerization conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4299–4307, 2000  相似文献   

5.
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006  相似文献   

6.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   

7.
The UV‐visible spectroscopic study of the interaction between rac‐Et(Ind)2ZrCl2 and different aluminoxanes, such as isobutylaluminoxane (BAO) and ethyl(isobutyl)aluminoxane (EBAO), was conducted under normal polymerization conditions. UV‐visible absorption spectra of rac‐Et(Ind)2ZrCl2/aluminoxanes were correlated with the formation of ionic zirconium species. The influence of different aluminoxanes on the tightness of the metallocenium‐aluminoxane ionic pairs was interpreted in terms of the aluminoxane structure. The loose ionic pairs formed in the EBAO system causes a fast decaying kinetic profile, advantageous for copolymerization.  相似文献   

8.
Copolymerizations of ethylene with α‐olefins (i.e., 1‐hexene, 1‐octene, allylbenzene, and 4‐phenyl‐1‐butene) using the bis(β‐enaminoketonato) titanium complexes [(Ph)NC(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = Ph, R2 = CF3; and 1c : R1 = t‐Bu, R2 = CF3), activated with modified methylaluminoxane as a cocatalyst, have been investigated. The catalyst activity, comonomer incorporation, and molecular weight, and molecular weight distribution of the polymers produced can be controlled over a wide range by the variation of the catalyst structure, α‐olefin, and reaction parameters such as the comonomer feed concentration. The substituents R1 and R2 of the ligands affect considerably both the catalyst activity and comonomer incorporation. Precatalyst 1a exhibits high catalytic activity and produces high‐molecular‐weight copolymers with high α‐olefin insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6323–6330, 2005  相似文献   

9.
Propylene was copolymerized with the linear α‐olefins 1‐octene, 1‐decene, 1‐tetradecene, and 1‐octadecene. The metallocene catalyst Me2Si(2‐Me Benz[e]Ind)2ZrCl2, in conjunction with methylalumoxane as a cocatalyst, was used to synthesize the copolymers. The copolymers were characterized by 13C and 1H NMR with a solvent mixture of 1,2,4‐trichlorobenzene (TCB) and benzene‐d6 (9/1) at 100 °C. Thermal analyses were carried out to determine the melting and crystallization temperatures, whereas the molecular weights and molecular weight distributions were determined by gel permeation chromatography with TCB at 140 °C. Glass‐transition temperatures were determined with dynamic mechanical analysis. Relationships among the comonomer type and amount of incorporation and the melting/crystallization temperatures, glass‐transition temperature, crystallinity, and molecular weight were established. Moreover, up to 3.5% of the comonomer was incorporated, and there was a decrease in the molecular weight with increased comonomer content. Also, the melting and crystallization temperatures decreased as the comonomer content increased, but this relationship was independent of the comonomer type. In contrast, the values for the glass‐transition temperature also decreased with increased comonomer content, but the extent of the decrease was dependent on the comonomer type. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4110–4118, 2000  相似文献   

10.
The catalyst system i‐Pr(Cp)(9‐Flu)ZrCl2/methylaluminoxane was used for the synthesis of random syndiotactic copolymers of propylene with 1‐hexene, 1‐dodecene, and 1‐octadecene as comonomers. An investigation of the microstructure by 13C NMR spectroscopy revealed that the stereoregularity of the copolymers decreased because of an increase in skipped insertions in the presence of the higher 1‐olefin. The melting temperature of the copolymers, as measured by differential scanning calorimetry (DSC), decreased linearly with increasing comonomer content independently of the comonomer nature. During the DSC heating cycle, an exothermic peak indicating a crystallization process was observed. The decrease in the crystallization temperature with higher 1‐olefin content, measured by crystallization analysis fractionation, indicated a small but significant dependence on the nature of the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 128–140, 2002  相似文献   

11.
Four nonconjugated diene comonomers 1,9‐decadiene (19DD), 6‐ethylundeca‐1,10‐diene (EUD), 1,5‐cyclooctadiene (COD) and cinene (1‐methyl‐4‐(prop‐1‐en‐2‐yl) cyclohex‐1‐ene) (CE) were used in copolymerization with ethylene catalyzed by α‐diimine Ni(II) complex ([2,6‐(iPr)2C6H3N = C(CH3)?(CH3)C = N2,6‐(iPr)2C6H3)]NiBr2 ( 1 )) activated by Et2AlCl. These dienes showed quite distinct copolymerization behaviors. Ethylene‐19DD copolymerization formed highly branched polyethylene with cyclic units and pendent vinyls, and a large part of crosslinked polymer when the 19DD concentration was relatively high. Using EUD as comonomer lead to evidently reduced gel formation and increased content of pendent vinyl. COD can be incorporated in the copolymer with evidently lower catalyst efficiency than the ethylene homopolymerization, and CE behaves like an inert compound as it was not incorporated in the copolymer. Homopolymerization of 19DD with the same catalyst produced polymer containing both cyclic units and pendent vinyls. The cyclic units were formed by cyclopolymerization of the inserted 19DD after several steps of chain walking. Crosslinking through the pendent vinyl took place when the initial 19DD concentration was relatively high, forming large amount of gel in the product. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1900–1909  相似文献   

12.
The catalyst DADNi(NCS)2 (DAD = (ArN?C(Me)? C(Me)?ArN); Ar = 2,6‐C6H3), activated by methylaluminoxane, was tested in ethylene polymerization at temperatures above 25 °C and variable Al/Ni ratio. The system was shown to be active even at 80 °C and when supported on silica. However, catalyst activity decreased. The catalyst system was also tested in ethylene and 10‐undecen‐1‐ol copolymerization at different ethylene pressures. The best activities were obtained at low polar monomer concentration (0.017 mol/L), using triisopropylaluminum (Al‐i‐Pr3) to protect the polar monomer. The incorporation of the comonomer increased with the increase of polar monomer concentration. According to 13C NMR analyses, all the resulting polyethylenes were highly branched and the polar monomer incorporation decreased as ethylene pressure increased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5199–5208, 2007  相似文献   

13.
For the copolymerization of ethylene with propylene or a higher α‐olefin, using Et[Ind]2ZrCl2 metallocene catalyst, modification of silica with silicon tetrachloride prior to MAO adsorption can increase the activity, which is more pronounced for ethylene/1‐hexene copolymerization at higher pressure and temperature. The molecular weight of the copolymer produced was lower and the polydispersity tends to be decreased. No significant effect of SiCl4 addition on the microstructure and the chemical composition distribution of the copolymer produced was observed.  相似文献   

14.
Poly(propylene‐ran‐1,3‐butadiene) was synthesized using isospecific zirconocene catalysts and converted to telechelic isotactic polypropylene by metathesis degradation with ethylene. The copolymers obtained with isospecific C2‐symmetric zirconocene catalysts activated with modified methylaluminoxane (MMAO) had 1,4‐inserted butadiene units ( 1,4‐BD ) and 1,2‐inserted units ( 1,2‐BD ) in the isotactic polypropylene chain. The selectivity of butadiene towards 1,4‐BD incorporation was high up to 95% using rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride (Cat‐A)/MMAO. The molar ratio of propylene to butadiene in the feed regulated the number‐average molecular weight (Mn) and the butadiene contents of the polymer produced. Metathesis degradations of the copolymer with ethylene were conducted with a WCI6/SnMe4/propyl acetate catalyst system. The 1H NMR spectra before and after the degradation indicated that the polymers degraded by ethylene had vinyl groups at both chain ends in high selectivity. The analysis of the chain scission products clarified the chain end structures of the poly(propylene‐ran‐1,3‐butadiene). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5731–5740, 2007  相似文献   

15.
An α‐iminocarboxamide nickel complex was activated by trimethylaluminum (TMA) and used in the polymerization of ethylene and its copolymerization with 10‐undecen‐1‐ol. The best activity was observed upon activation with 9 equiv of TMA at a temperature of 26 °C. NMR spectroscopic studies did not show 10‐undecen‐1‐ol incorporation. However, FTIR analyses suggest the incorporation of a very small amount of comonomer, which affects the glass transition temperature, the degree of branching, and the mechanical properties of the materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 54–59, 2008  相似文献   

16.
A new disilyl‐bridged complex, [(Ntert‐butylamido)(3‐indenyl)tetramethyldisilyl]titanium dichloride ( 3 ), was synthesized and activated with methylaluminoxane (MAO) for propylene homopolymerization and ethylene/propylene and ethylene/1‐hexene copolymerizations. A polypropylene with a slight isotactic enrichment was obtained. The number of regioerrors present in the polypropylene was somewhat smaller than that found in most polypropylenes made from monosilyl‐bridged [(Ntert‐butylamido)(3‐indenyl)dimethylsilyl]titanium dichloride. The regioerrors detected in the copolymers obtained from 3 /MAO were on the order of the amounts observed in polymers made with the monosilyl‐bridged constrained geometry catalysts. Ethylene copolymers of propylene and 1‐hexene had random sequence distributions and showed significant comonomer incorporation. Because of the presence of regioerrors, a modified method for determining the monomer composition and sequence distribution was developed from the direct measurement of the monomer content from the number of methylene and methine carbons per polymer chain, regardless of propylene inversion. An estimate of the error in the copolymerization reactivity ratio determination for regioirregular ethylene/α‐olefin copolymers was obtained by the calculation of the reactivity ratios from monomer dyad sequences, with consideration given to the contribution of major regioirregular sequences. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3840–3851, 2005  相似文献   

17.
Three new three‐dimensional geometry bulky α‐diimine ligands ( L ) containing electron‐donating and electron‐withdrawing groups, 9,10‐dihydro‐9,10‐ethanoanthracene‐11,12‐di(Ar)imine (Ar = p‐PhCH3, L1 ; Ar=p‐PhCl, L2 ; Ar=p‐PhCF3, L3 .), and their corresponding single Ni(II) catalysts, NiL2Br2 ( Ni(L1)2Br2 , Ni(L2)2Br2 , and Ni(L3)2Br2 , were synthesized and the molecular structure were determined by X‐ray crystallography. All NiL2Br2 catalysts were tested for norbornene polymerization and copolymerization of norbornene with 1‐alkene after activation with B(C6F5)3. The results that the polymerization catalytic activities for norbornene up to 105 gpolymer/molNi·h even at 140 °C, shown that NiL2Br2 catalysts have high thermal stability. Meanwhile, catalysts with electron‐withdrawing groups could achieve higher reactivity. The obtained poly(NB‐co‐1‐alkene)s were confirmed to be vinyl‐addition copolymers and noncrystalline. All copolymers exhibited high 1‐alkenes insertion ratio, good thermal stability (Td > 375 °C), high molecular weight (up to 105 g/mol), good solubility in common organic solvents and could be processed into films with good transparency in the visible region. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3495–3505  相似文献   

18.
Norbornene copolymers functionalized with methyl ester group or carboxy group are facilely synthesized by the copolymerization of norbornene and 7‐octenyldiisobutylaluminum (ODIBA) with ansa‐dimethylsilylene(fluorenyl)(t‐butylamido)dimethyltitanium ( 1 ) activated by Ph3CB(C6F5)4, and the sequential CO2/methanolysis reactions or CO2/hydrolysis reactions, respectively. The methanolysis and the hydrolysis are simply switched by engaging acidic methanol or acidic aqueous acetone as the quenching/washing solution, respectively. Meanwhile, the increase of ODIBA in the copolymerization abruptly decreases the yield and number–average molecular weight (Mn) of the product. However, the addition of triisobutylaluminum (8 mM) and the use of excess Ph3CB(C6F5)4 (twofold of 0.4 mM of 1 ) significantly increase the yield, accompanying the increase in the Mn and the narrowing of the molecular weight distribution (Mw/Mn), especially in the case of the use of excess Ph3CB(C6F5)4. The yield (g polymer/g monomers), Mn, and Mw/Mn reach up to 0.82, 341,000, and 1.46, respectively, at a copolymerization condition. The carboxy groups in the norbornene copolymers are controlled in the range of 0–1.8 mol % in high polymer yields with high Mn and narrow Mw/Mn accompanied by the decrease in the contact angle with water from 104° to 89°. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5085–5090  相似文献   

19.
In this work, ethylene‐1‐hexene copolymers were synthesized with a tandem catalysis system that consisted of a new trimerization catalyst bis(2‐dodecylsulfanyl‐ethyl) amine‐CrCl3/MAO ( 1 /MAO) and copolymerization catalyst Et(Ind)2ZrCl2/MAO ( 2 /MAO) at atmosphere pressure. Catalyst 1 trimerized ethylene with high activity and excellent selectivity in the presence of a relatively low amount of MAO. Catalyst 2 incorporated the 1‐hexene content and produced ethylene‐1‐hexene copolymer from an ethylene‐only stock in the same reactor. Adjusting the Cr/Zr ratio and reaction temperature yielded various branching densities and thus melting temperatures. However, broad DSC curves were observed when low temperatures and/or high Cr/Zr ratios were employed due to an accumulation of 1‐hexene component and composition drifting during the copolymerization. It was found that a short pretrimerization period resulted in more homogeneous materials that gave unimodal DSC curves. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3562–3569, 2007  相似文献   

20.
The polymerization of norbornene with bis(β‐ketonaphthylamino) palladium(II), Pd{CH3C(O)CHC[N(naphthyl)]CH3}2, in combination with tris(pentafluorophenyl)borane (B(C6F5)3), was investigated by varying the B:Pd(II) molar ratio, monomer concentration, reaction temperature, and time. The catalytic activity was found to reach 2.8 × 104 gPolymer/(molPd?h) and the obtained polynorbornene (PNBE) was confirmed to be vinyl addition polymer and showed good thermo‐stability (Tdec > 350°C), but exhibited poor solubility in organic solvents due to the relative higher stereo regularity. Pd{CH3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 system is also an active catalyst for copolymerization of norbornene and 5‐norbornene‐2‐yl acetate (NBE‐OCOCH3) in toluene with moderate yields (in 9.2–36.5% yields) and produces the addition‐type copolymer with relatively high molecular weights (0.96 × 104–2.13 × 104 g/mol). The incorporation of functional group in the copolymer can be controlled up to 0.9–23.5 mol% by varying the NBE‐OCOCH3 monomer feed ratios from 10 to 90%. The copolymers are proved to be noncrystalline and show good solubility in common organic solvents and excellent thermal stability up to 350°C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号