首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Surface molecular imprinting over functionalized nanoparticles has proved to be an effective approach for construction of artificial nanomaterials for protein recognition. Herein, we report a strategy for synthesis of core–shell protein‐imprinted nanoparticles by the functionalization of nano‐cores with ionic liquids followed by aqueous precipitation polymerization to build thermo‐responsive imprinted polymer nano‐shells. The immobilized ionic liquids can form multiple interactions with the protein template. The polymerization process can produce thermo‐reversible physical crosslinks, which are advantageous to enhancing imprinting and facilitating template removal. With bovine hemoglobin as a model template, the imprinted nanoparticles showed temperature‐sensitivity in both dispersion behaviors and rebinding capacities. Compared with the ionic‐liquid‐modified core nanoparticles, the imprinted particles exhibited greatly increased selectivity and two orders of magnitude higher binding affinity for the template protein. The imprinted nanoparticles achieved relatively high imprinting factor up to 5.0 and specific rebinding capacity of 67.7 mg/g, respectively. These nanoparticles also demonstrated rapid rebinding kinetics and good reproducibility after five cycles of adsorption–regeneration. Therefore, the presented approach may be viable for the fabrication of high‐performance protein‐imprinted nanoparticles with temperature sensitivity.  相似文献   

3.
This article describes for the first time the development of a new polymerization technique by introducing iniferter‐induced “living” radical polymerization mechanism into precipitation polymerization and its application in the molecular imprinting field. The resulting iniferter‐induced “living” radical precipitation polymerization (ILRPP) has proven to be an effective approach for generating not only narrow disperse poly(ethylene glycol dimethacrylate) microspheres but also molecularly imprinted polymer (MIP) microspheres with obvious molecular imprinting effects towards the template (a herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D)), rather fast template rebinding kinetics, and appreciable selectivity over structurally related compounds. The binding association constant Ka and apparent maximum number Nmax for the high‐affinity sites of the 2,4‐D imprinted polymer were determined by Scatchard analysis and found to be 1.18 × 104 M?1 and 4.37 μmol/g, respectively. In addition, the general applicability of ILRPP in molecular imprinting was also confirmed by the successful preparation of MIP microspheres with another template (2‐chloromandelic acid). In particular, the living nature of ILRPP makes it highly useful for the facile one‐pot synthesis of functional polymer/MIP microspheres with surface‐bound iniferter groups, which allows their direct controlled surface modification via surface‐initiated iniferter polymerization and is thus of great potential in preparing advanced polymer/MIP materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3217–3228, 2010  相似文献   

4.
The first combined use of atom transfer radical polymerization (ATRP) and precipitation polymerization in the molecular imprinting field is described. The utilized polymerization technique, namely atom transfer radical precipitation polymerization (ATRPP), provides MIP microspheres with obvious molecular imprinting effects towards the template, fast template binding kinetics and an appreciable selectivity over structurally related compounds. The living chain propagation mechanism in ATRPP results in MIP spherical particles with diameters (number‐average diameter Dn ≈ 3 μm) much larger than those prepared via traditional radical precipitation polymerization (TRPP). In addition, the MIP microspheres prepared via ATRPP have also proven to show significantly higher high‐affinity binding site densities on their surfaces than the MIP generated via TRPP, while the binding association constants Ka and apparent maximum numbers Nmax of the high‐affinity sites as well as the specific template bindings are almost the same in the two cases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3257–3270, 2009  相似文献   

5.
Well‐defined bimodal molecular weight distribution (MWD) polystyrene and polystyrene‐b‐poly(acrylonitrile) were successfully synthesized using a pair of mono/difunctional trithiocarbonate RAFT agents 1 and 2 via one‐pot RAFT polymerization. The kinetics of RAFT polymerization for styrene in bulk with a molar ratio of [St]0:[AIBN]0:[ 1 ]0:[ 2 ]0 = 1200:1:2.5:2.5 was studied at 75°C. The results indicated that the system showed excellent controllability and “living” characteristics to both higher and lower molecular weight fractions, providing an efficient and facile way to producing bimodal MWD (co)polymers with both controlled molecular weight (MW) and MWD in molecular level, and the plausible mechanism was discussed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
We developed an approach for the use of polyester dendrimer during the imprinting process to raise the number of recognized sites in the polymer matrix and improve its identification ability. Photoresponsive molecularly imprinted polymers were synthesized on modified magnetic nanoparticles involving polyester dendrimer which uses the reactivity between allyl glycidyl ether and acrylic acid for the high‐yielding assembly by surface polymerization. The photoresponsive molecularly imprinted polymers were constructed using methylprednisoloneacetate as the template, water‐soluble azobenzene involving 5‐[(4, 3‐(methacryloyloxy) phenyl) diazenyl] dihydroxy aniline as the novel functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. Through the evaluation of a series of features of spectroscopic and nano‐structural, this sorbent showed excellent selective adsorption, recognition for the template, and provided a highly selective and sensitive strategy for determining the methylprednisoloneacetate in real and pharmaceutical samples. In addition, this sorbent according to good photo‐responsive features and specific affinity to methylprednisoloneacetate with high recognition ability, represented higher binding capacity, a more extensive specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer.  相似文献   

7.
Soluble hyperbranched glycopolymers were prepared by copolymerization of glycan monomers with reversible addition‐fragmentation chain transfer polymerization (RAFT) inimers in a simple one‐pot reaction. Two novel RAFT inimers, 2‐(methacryloyloxy)ethyl 4‐cyano‐4‐(phenylcarbonothioylthio)pentanoate (MAE‐CPP) and 2‐(3‐(benzylthiocarbonothioylthio)propanoyloxy)ethyl acrylate (BCP‐EA) were synthesized and used to prepare hyperbranched glycopolymers. Two types of galactose‐based saccharide monomers, 6‐O‐methacryloyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (proGal‐M) and 6‐O‐(2′‐acrylamido‐2′‐methylpropanoate)‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (proGal‐A), containing a methacrylate and an acrylamide group, respectively, were also synthesized and polymerized under the mediation of the MAE‐CPP and BCP‐EA inimers, respectively. In addition, hyperbranched poly(proGal‐M), linear poly(proGal‐A), and hyperbranched poly(proGal‐A) were generated and their polymerization kinetics were studied and compared. An unexpected difference was observed in the kinetics between the two monomers during polymerization: the relationship between polymerization rate and concentration of inimer was totally opposite in the two monomer–inimer systems. Branching analysis was conducted by using degree of branching (DB) as the measurement parameter. As expected, a higher DB occurred with increased inimer content. Furthermore, these polymers were readily deprotected by hydrolysis in trifluoroacetic acid solution resulting in water‐soluble polymers. The resulting branched glycopolymers have potential as biomimetics of polysaccharides. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
In this work, two different surface imprinting formats have been evaluated using thiabendazole (TBZ) as model template. The first format is a thin film of molecularly imprinted polymer (MIP) grafted from preformed silica particles using an immobilized iniferter‐type initiator (inif‐MIP). The second format is molecularly imprinted polymer microspheres with narrow particle size distribution and core‐shell morphology prepared by precipitation polymerization in a two‐step procedure. For the latter format, polymer microspheres (the core particles) were obtained by precipitation polymerization of divinylbenzene‐80 (DVB‐80) in acetonitrile. Thereafter, the core particles were used as seed particles in the synthesis of MIP shells by copolymerization of DVB‐80 and methacrylic acid in the presence of TBZ in a mixed solvent porogen (acetonitrile/toluene). The materials were characterized by elemental microanalysis, nitrogen sorption porosimetry and scanning (and transmission) electron microscopy. Thereafter, the imprinted materials were assessed as stationary phases in liquid chromatography. From this study it can be concluded that grafted MIP beads can be obtained in a simple and direct manner, consuming only a fraction of the reagents used typically to prepare imprinted particles from a monolithic imprinted polymer. Such materials can be used in the development of in‐line molecularly imprinted solid‐phase extraction methods. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1058–1066, 2010  相似文献   

9.
10.
In this work, the synthesis of molecularly imprinted polymer microspheres with narrow particle size distributions and core-shell morphology by a two-step precipitation polymerization procedure is described. Polydivinylbenzene (poly DVB-80) core particles were used as seed particles in the production of molecularly imprinted polymer shells by copolymerization of divinylbenzene-80 with methacrylic acid in the presence of thiabendazole (TBZ) and an appropriate porogen. Thereafter, polymer particles were packed into refillable stainless steel HPLC columns used in the development of an inline molecularly imprinted SPE method for the determination of TBZ in citrus fruits and orange juice samples. Under optimized chromatographic conditions, recoveries of TBZ within the range 81.1-106.4%, depending upon the sample, were obtained, with RSDs lower than 10%. This novel method permits the unequivocal determination of TBZ in the samples under study, according to the maximum residue levels allowed within Europe, in less than 20 min and without any need for a clean-up step in the analytical protocol.  相似文献   

11.
Spherical molecularly imprinted polymers (SMIPs) have been prepared via a novel precipitation polymerization using sulfasalazine (prodrug used in the diseases of the colon) as template. The sulfasalazine was incorporated into SMIPs and into a spherical non-imprinted polymer (control), and then the release rate of the bioactive agent at different pH values was evaluated. Considerable differences in the release characteristics between imprinted and non-imprinted polymers have been observed. This opens the possibility of the development of drug release systems capable of modulating the release of a specific molecule. Photomicrography of spherical molecularly imprinted polymers (SMIPs).  相似文献   

12.
To obtain the desired specific adsorbents for carbaryl to enrichment, separation, and analysis of trace pesticide residues in environmental water, molecularly imprinted polymer (MIP) microspheres were prepared by precipitation polymerization using carbaryl, methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), azobisisobutyronitrile (AIBN), and acetonitrile as template, functional monomer, cross‐linker, initiator, and porogen, respectively. Molecular modeling software was used to compute rational interaction between the template molecule and function monomer. The adsorption properties of carbaryl in acetonitrile for imprinted microspheres were evaluated by equilibrium rebinding experiments. Scatchard plot analysis revealed that there was one class of binding sites populated in the imprinted polymer microspheres with dissociation constants of 3.3 × 10?2 mol/l and an apparent maximum number of 1.95 µmol/g. The specificity of the imprinted microspheres was investigated by binding analysis using carbaryl and structurally related carbamate pesticides. The results indicated that the obtained imprinted microspheres showed a good selectivity for carbaryl. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Erythromycin‐imprinted polymers with excellent recognition properties were prepared by an innovative strategy called distillation–precipitation polymerization. The interaction between erythromycin and methacrylic acid was studied by ultraviolet absorption spectroscopy, and the as‐prepared materials were characterized by Fourier‐transform infrared spectroscopy and scanning electron microscopy. Moreover, their binding performances were evaluated in detail by static, kinetic and selective sorption tests. It was found that the molecularly imprinted polymers afforded good morphology, monodispersity, and high adsorption capacity when the fraction of the monomers was 7 vol% in the whole reaction system, and the adsorption data for imprinted polymers correlated well with the Langmuir model. The maximum capacity of the imprinted and the non‐imprinted polymers for adsorbing erythromycin is 44.03 and 19.95 mg/g, respectively. The kinetic studies revealed that the adsorption process fitted a pseudo‐second‐order kinetic model. Furthermore, the imprinted polymers display higher affinity toward erythromycin, compared with its analogue roxithromycin.  相似文献   

14.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

15.
Surface molecularly imprinted polymers were successfully prepared by a novel two‐step precipitation polymerization method. The first‐step allowed the formation of 4‐vinylpyridine divinylbenzene and trimethylolpropane trimethacrylate copolymeric microspheres. In the second‐step precipitation polymerization, microspheres were modified with a molecularly imprinting layer of oleanolic acid as template, methacrylic acid as functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as cross‐linker. The obtained polymers had an average diameter of 4.43 μm and a polydispersity index of 1.011; adsorption equilibrium was achieved within 40 min, with adsorption capacity reaching 27.4 mg/g. Subsequently, the polymers were successfully applied as the adsorbents of molecularly imprinted solid‐phase extraction to separate and purify the oleanolic acid from grape pomace. The content of oleanolic acid in the grape pomace extract was enhanced from 13.4 to 93.2% after using the molecularly imprinted solid‐phase extraction process. This work provides an efficient way for effective oleanolic acid separation and enrichment from complex matrices, which is especially valuable in industrial production.  相似文献   

16.
One‐monomer molecularly imprinted magnetic nanoparticles were prepared as adsorbents for selective extraction of bisphenol A from water in this study. A single bi‐functional monomer was adopted for preparation of the molecularly imprinted polymer, avoiding the tedious trial‐and‐error optimizations as traditional strategy. Moreover, bisphenol F was used as the dummy template for bisphenol A to avoid the interference from residual template molecules. These nanoparticles showed not only large adsorption capacity and good selectivity to the bisphenol A but also outstanding magnetic response performance. Furthermore, they were successfully used as magnetic solid‐phase extraction adsorbents of bisphenol A from various water samples, including tap water, river water, and seawater. The developed method was found to be much more efficient, convenient, and economical for selective extraction of bisphenol A compared with the traditional solid‐phase extraction. Separation of these nanoparticles can be easily achieved with an external magnetic field, and the optimized adsorption time was only 15 min. The recoveries of bisphenol A in different water samples ranged from 85.38 to 93.75%, with relative standard deviation lower than 7.47%. These results showed that one‐monomer molecularly imprinted magnetic nanoparticles had the potential to be popular adsorbents for selective extraction of pollutants from water.  相似文献   

17.
In this study, we designed and investigated pH‐responsive nanoparticles based on different ratios of monomers with primary, secondary or tertiary amino groups. For this purpose, copolymers of methyl methacrylate (MMA) with different compositions of amino methacrylates (2‐(dimethylamino)ethyl methacrylate (DMAEMA), 2‐(tert‐butylamino)ethyl methacrylate (tBAEMA) and 2‐aminoethyl methacrylate hydrochloride (AEMA·HCI)) were synthesized using the reversible addition‐fragmentation chain transfer (RAFT) polymerization process. The controlled nature of the radical polymerization was demonstrated by kinetic studies. All copolymers show low dispersities (?M < 1.2) with amino contents between 9 and 21 mol %. For the nanoparticle formation, nanoprecipitation with subsequent solvent evaporation was used. All suspensions were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Different initial conditions of the formulations resulted in differently sized nanoparticles that have monomodal size distributions, relatively narrow polydispersity index (PDI) values and positive zeta potential values. The pH‐stability test results demonstrated that, depending on the structure and amount of the amino content, the obtained nanoparticles reveal a reversible pH‐response, such as dissolution at acidic pH values. The ability of the nanoparticles to encapsulate guest molecules was confirmed by pyrene fluorescence studies. The cytotoxicity assay results showed that the nanoparticles did not have any significant cytotoxic effect. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2711–2721  相似文献   

18.
A new synthetic approach to prepare Ag nanoparticles protected side‐chain liquid crystalline (LC) azobenzene polymers was reported. It is based on the reduction of silver ions in presence of a LC polymer polymerized by RAFT. The formation of Ag colloidal nanoparticles was confirmed by TEM and UV analysis. At the same time, according to the results of DSC, XPS, and FTIR spectra, Ag nanoparticles were protected by the side‐chain LC azobenzene polymers through surface attachment interactions between thiol groups and Ag. The out‐plane orientation of side‐chain LC is confirmed by surface‐enhanced Raman spectra analysis and scanning near‐field optical microscope, resulting from the large electromagnetic field arising from the excitation of surface plasmon polariton of Ag nanoparticles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5380–5386, 2007  相似文献   

19.
Dispersion RAFT polymerization of styrene in the alcohol/water mixture mediated with the brush macro‐RAFT agent of poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] with similar molecular weight but different chemical composition is investigated. Well‐controlled RAFT polymerization including an initial slow homogeneous polymerization and a subsequent fast heterogeneous polymerization at almost complete monomer conversion is achieved. The molecular weight of the synthesized block copolymer increases linearly with the monomer conversion, and the polydispersity is relatively narrow (PDI < 1.3). The RAFT polymerization kinetics is dependent on the chemical composition in the brush macro‐RAFT agents, and those with high content of hydrophobic segment lead to fast RAFT polymerization. The growth of the block copolymer nano‐objects during the RAFT polymerization is explored, and various block copolymer nano‐objects such as nanospheres, worms, vesicles and large‐compound‐micelle‐like particles are prepared. The parameters such as the chemical composition in the brush macro‐RAFT agent, the chain length of the solvatophobic block, the concentration of the feeding monomer and the solvent character affecting the size and morphology of the block copolymer nano‐objects are investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3177–3190  相似文献   

20.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号