首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
以端羟基L-丙交酯/乙交酯共聚物(PLLG-diol)和端羟基ε-己内酯/乙交酯共聚物(PCG-diol)为硬段和软段,通过与二异氰酸酯反应制得了软、硬分子量和组成均可调的多嵌段聚(酯-氨酯),表征了它们的形状记忆行为.多嵌段聚(酯-氨酯)具有良好的形状记忆性质,应变固定率达98%~99.5%,应变恢复率达93%~98.5%;通过转变温度的调节,可使多嵌段聚(酯-氨酯)在37℃体温下不发生形状变化,而在稍高于体温的温度(40~50℃)下恢复原始形状,其形状恢复速率可通过温度和升温速率来调节.  相似文献   

2.
It is the first attempt to reveal the effect of reversible phase crystallization process on shape memory effect in shape memory polyurethane (PU) ionomer. Thereof the cyclic tensile testing was conducted with various cooling time to fix the temporary deformation for assessing shape memory function. The crystallization process of the reversible phase, poly (ε‐caprolactone) (PCL) in shape memory PU ionomers composed of different ionic group contents, 1,4‐butanediol, 4,4′‐methylenebis(phenyl isocyanate) and PCL, was investigated by using isothermal crystallization kinetics under the thermal routine similar to that for the cyclic tensile testing. The results demonstrate that the ionic groups within hard segments significantly slow down the crystal growth of the reversible phase. When the physical crosslink is strong enough, the crystallization rate would be a predominant factor determining the shape fixity ratio after various cooling time. Instead, when physical crosslink is weakening, the influence of crystallization rate is much less on the cooling time dependence of fixity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Transfer printing is a critical procedure for manufacturing stretchable electronics.During such a procedure,stamps are utilized to transfer micro devices from silicon wafers to stretchable polymeric substrates.In addition to conventional silicone rubber stamps,epoxy resin based shape memory stamps have been developed and the transfer yield is thus significantly promoted.However,elastic modulus of the epoxy stamps is too high at both glassy and rubbery states,which may break the brittle micro devices during the adhesion process under mechanical pressure.In this work,we synthesized a copolymer of butyl acrylate (BA) and polycaprolactone diacrylate (PCLDA) as a soft reversible dry adhesive enabling a shape memory capability based on crystalline transition of polycaprolactone (PCL) segments.For the sample containing 40 wt% BA and 60 wt% PCLDA,Young's modulus was 8.3 and 0.9 MPa respectively below and above the thermal transition temperature,which was much lower than that of the epoxy adhesive.On the other hand,the soft material still provided nearly ideal shape memory fixity and recovery ratios.Subsequently,shape memory surface with cone-shaped microstructure was prepared,which enabled a heating induced strong-to-weak adhesion transition when the microstructure recovered from a pressed temporary morphology to the permanent cone-shaped morphology.Such a soft reversible dry adhesive may contribute to large-scale and automated transfer printing processing.  相似文献   

4.
Two compounds, 9,10‐bis[2‐(quinolyl)vinyl]anthracene (BQVA) and 9,10‐bis[2‐(naphthalen‐2‐yl)vinyl]anthracene (BNVA), have been synthesised and investigated. Both of them have aggregation‐induced enhanced emission (AIEE) properties. Heteroatom‐assisted BQVA shows solvatochromism, reversible chromism properties and self‐assembly effects. When increasing the solvent polarities, the green solution of BQVA turns to orange with a redshift of the fluorescence emission wavelengths from λ=527 to 565 nm. Notably, BQVA exhibits reversible chromism properties, including mechano‐ and thermochromism. The as‐prepared BQVA powders show green fluorescence (λem=525 nm) and the colour can turn into orange (λem=573 nm) after grinding. Interestingly, the orange colour can return at high temperature. Based on these reversible chromism properties, a simple and convenient erasable board has been designed. Different from BQVA, non‐heteroatom‐assisted BNVA has no clear chromic processes. The results obtained from XRD, differential scanning calorimetry, single‐crystal analysis and theoretical calculations indicate that the chromic processes depend on the heteroatoms in BQVA. Additionally, BQVA also exhibits excellent self‐assembly effects in different solvents. Homogeneous nanospheres are formed in mixtures of tetrahydrofuran and water, which are then doped into silica nanoparticles and treated with 3‐aminopropyltriethoxysilane to give amino‐functionalised nanoparticles (BQVA?AFNPs). The BQVA?AFNPs could be used to stain protein markers in polyacrylamide gel electrophoresis.  相似文献   

5.
This article investigates shape memory polymers (SMPs) fabricated by swelling sulfur crosslinked natural rubber with four different molten fatty acids: lauric, myristic, palmitic, and stearic acid. As inexpensive additives, they allow commodity natural rubber to be directly converted to SMPs. The shape memory properties are investigated as a function of wt% fatty acid, the choice of fatty acid, and the applied load during shape memory programming. It is found that increasing the wt% acid improves the shape fixity up to ca. 97% at ≥50 wt% fatty acid, at which point the recovery starts to decline with increasing wt% acid due to network failure during shape programming. The shape fixity is found to depend on the yield stress and modulus of the fatty acid network, which both increase with increasing wt% acid. The choice of fatty acid also varies the trigger temperature for shape memory, which scales with the melting point of the fatty acid. Serendipitously, it is found that alignment of the fatty acid crystals during programming produces stiffer networks whose modulus increase with applied load, which counterbalances the higher elastic energy stored in the rubber network to produce lower sensitivity of the shape fixity to the applied load. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 673–687  相似文献   

6.
A novel pH sensitive shape‐memory polymer (SMP) is prepared by cross‐linking the β‐cyclodextrin modified alginate (β‐CD‐Alg) and diethylenetriamine modified alginate (DETA‐Alg): The pH reversible β‐CD‐DETA inclusion complexes serve as a reversible phase, and the cross‐linked alginate chains serve as a fixing phase. It is shown that this material can be processed into temporary shape as we needs at pH 11.5 and recover to its initial shape at pH 7. The recovery ratio and the fixity ratio were 95.7 ± 0.9% and 94.8 ± 1.1%, respectively. Furthermore, this material showed good degradability and biocompatibility. Because the shape transition pH value is quite close to that of our body fluid and this pH triggered shape‐memory effect is convenient and safe to use, this material has a high potential for medical application.  相似文献   

7.
Segmented thermoplastic polyurethanes (TPU)s with amorphous soft segments from the reaction of hexamethylene diisocyanate and 1,2‐butanediol and crystalline hard segments from 4,4′‐methylenediphenyl diisocyanate and 1,6‐hexanediol showed sharp glass‐transition temperatures that could be used as shape‐recovery temperatures. The thermal, mechanical, and shape‐memory effect of these TPUs of various block compositions and lengths were studied by differential scanning calorimetry, dynamic mechanical testing, and tensile testing. As the block lengths decreased, phase mixing increased and hysteresis in the shape‐memory behavior decreased. Too low a content of hard segments increased the hysteresis in the shape‐memory behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2652–2657, 2000  相似文献   

8.
Searching new shape memory polymer and the associating synthesis technology are critical on the development of smart materials. In this paper, a comprehensive study on Poly(hexylene adipate) PHA being the soft segment of shape memory polyurethane (SMPU) was presented. Bulk polymerization method was employed to synthesize the SMPU with different soft segment length (SSL) and hard segment content (HSC). The influences of SSL and HSC on its morphology and thermomechanical property using DSC, DMA, POM, and shape memory behavior were presented here. The results indicate that the thermal properties, dynamic mechanic properties, and crystal morphology of SMPU are influenced significantly by SSL and HSC. And it is found that the shape fixity increases with SSL but decreases with HSC. On the other hand, the shape recovery decreases with both SSL and HSC, and the associated recovery temperature increases either with the increasing SSL or with decreasing HSC. Lastly, it is concluded that in the PHA‐based‐SMPU, the lower limiting value of SSL for polyurethane having shape memory effect is 2000; their response temperature varied with SSL and HSC, changing from 41.0 to 51.9 °C. Stable hard segment crystal are formed at above 30% HSC sample in bulk polymerization, but shape memory behavior can also be observed when its physical crosslink point are formed in the lower HSC PHA‐based‐SMPU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 444–454, 2007  相似文献   

9.
A siloxane‐containing diphenol is synthesized from 1,1,3,3‐tetramethyldisiloxane and o‐allylphenol, followed by the Mannich condensation with aniline, methylamine, and formaldehyde yielding two siloxane‐containing benzoxazines. The onset polymerization temperature of aniline‐based benzoxazine is higher than that of the methylamine counterpart. The dynamic mechanical properties of the polybenzoxazines depend on the structure of the starting primary amines. Both polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature, and they show excellent shape fixity ratios in bending, tension, and tensile stress–strain tests, high shape recovery ratios in bending and tension tests, but relatively low shape recovery ratios in tensile stress–strain test. The network chain segments including the alkylsiloxane units serve as a thermal control switch based on the glass transition temperatures (39 and 53 °C) for the polybenzoxazines. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1255–1266  相似文献   

10.
Covalently crosslinked polyurethane/urea polymers were synthesized using diamine monomers modified with pendant glucose groups and 2,4‐toluene diisocyanate, poly(ethylene glycol) (PEG), and 1,1,1‐tris(hydroxymethyl)ethane (triol) comonomers. The polymers showed shape memory behavior with a switching temperature dependent on the glass transition temperature. The glass transition temperature is tuned by varying the mole ratio between the glucose‐diamine and PEG used in the polymerization. Increasing PEG content resulted in decreasing glass transition temperature, and a glass transition temperature of 39 °C, close to physiological temperatures, was obtained. The fixed shape showed gradual shape recovery behavior, but a fixity of 70% was achieved when the material was stored at 25 °C. The polymer recovered to the permanent shape when heated to 50 °C. Finally, the surface of a film of the polymer can be sulfated to achieve increased blood‐compatibility without sacrificing the shape memory properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2252–2257  相似文献   

11.
A novel redox‐induced shape‐memory polymer (SMP) is prepared by crosslinking β‐cyclodextrin modified chitosan (β‐CD‐CS) and ferrocene modified branched ethylene imine polymer (Fc‐PEI). The resulting β‐CD‐CS/Fc‐PEI contains two crosslinks: reversible redox‐sensitive β‐CD‐Fc inclusion complexes serving as reversible phases, and covalent crosslinks serving as fixing phases. It is shown that this material can be processed into temporary shapes as needed in the reduced state and recovers its initial shape after oxidation. The recovery ratio and the fixity ratio are both above 70%. Furthermore, after entrapping glucose oxidase (GOD) in the system, the material shows a shape memory effect in response to glucose. The recovery ratio and the fixity ratio are also above 70%.

  相似文献   


12.
In recent years, significant progress has been made in polymeric materials, which alter shape upon external stimuli, suggesting potential applications in robotics, biomedical engineering, and optical devices. These stimuli-responsive materials may be categorized into two classes: (i) shape-changing materials in which a specific type of shape-shifting is encoded in the original material structure and (ii) shape-memory materials, which do not possess any predetermined shape-shifting as prepared, yet allow programming of complex shape transformations on demand. While shape alterations in shape-changing materials are intrinsically reversible, shape memory is usually a one-way transformation from a metastable (programmed) to an equilibrium (original) state. Recently, different principles for both one-way reversible and two-way reversible shape memory have been developed. These offer a powerful combination of reversibility and programmability, which significantly expands the range of potential applications. The goal of this review is to highlight recent developments in reversible shape-shifting by introducing novel mechanisms, materials, and applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1365–1380  相似文献   

13.
A novel liquid crystal elastomer (LCE) synthesized by melt polymerization, which exhibits the capacity of shape memory, is reported here for the first time. The method of synthesize the shape memory LCE has been explored. A facile two‐step method to synthesize these anisotropic materials to realize reversible shape change behavior is reported. The first reaction is the addition of nematic liquid crystal molecules to form a kind of liquid crystal polymer. Subsequently, the polymer is crosslinked to trap the order of the liquid crystal into a crosslinked LCE. The LCE exhibits liquid crystalline behavior which has shape memory with excellent fixity and recovery. Its shape memory and actuating properties also have been studied. When reheating the LCE to 165 °C, the shape will recover. The main chains and crosslinked bonds of the LCE contain ester groups, which are sensitive to alkaline and acidic condition. It turns out that the LCE is intact under acidic condition, but it can be degraded under alkaline condition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 389–394  相似文献   

14.
Composites with excellent water‐induced shape‐memory effects (SMEs) were successfully synthesized by first using clay as the SME‐activating phase and thermoplastic polyurethane (TPU) as the matrix. Naturally abundant clay was grafted with poly(methacrylic acid) (PMAA) to improve particle interactions, which allowed for the formation of strong percolation networks in the composites, determined by swelling tests and dynamic mechanical analysis in combination with theoretical modeling. This led to significant improvements of the polymer modulus and high water absorptions, causing reversible modulus changes of up to 30 times from the wet to the dry condition. The results from cyclic wetting‐drying‐stretching tests showed the TPU–clay composite containing 10.4 vol % PMAA‐grafted clay exhibited the best SMEs among the composites investigated, with the shape fixity and shape recovery ratios being 82% and 91%, respectively. Besides SMEs, these new polymer–clay composites were also pH‐sensitive and mechanically adaptive upon exposure to water. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1513–1522  相似文献   

15.
《印度化学会志》2021,98(5):100073
Chromism, generally a reversible color change of substances, finds vital applications in the fields of switching, catalysis, molecule binding, drug delivery and energy storage applications. Chromism is caused by the change of electronic, conformational, crystal or physical structure of materials due to heat, light, solvent/vapour, applied electric potential, etc. There have been observed different types of chromism such as thermochromism, photochromism, solvetochromism, electrochromism and many others from different compounds. Here in we have discussed different types of chromisms but in brief as inherited by various types of materials. Reversible multicolor chromism by metal halide formamidinium perovskite attests solvetochromism and thermochromism due to the hydrogen bonding. Tetrathiazolylthiophene compound shows mechanochromism because of the structural deformation. Chain length of ligand influences the chromism in copper complex. Gold cluster complex, boron complex, Bi2WO6 also display specific chromic performance. Phosphomolybdate – malachite green dye moiety (PMMG) displays hydrochromism because of bridged water molecules. N2 (or O2) binding to PMMG has recently been shown as an extension of hydrochromism phenomonon. Thus, this account on chromism from various materials is expected to attract the attention of researchers.  相似文献   

16.
Novel thermoplastic shape memory blends of ternary copolymerized polyamide (PAM) and maleated polyethylene (PE-g-MAH) were prepared by a simple melt-blending method, which might provide a new way for the industrial production of thermoplastic shape memory materials. The new chemical bonds were generated between PAM and PE-g-MAH, which was essential for enhancement of properties. The mechanical, thermal and shape memory properties of the blends were investigated in detail. It was found that the microstructure and proportion of different constituents was vital for the shape memory properties of the blends. In PAM/PE-g-MAH blends, a crystalline region of PAM acted as a fixed domain, and the crystalline region in PE-g-MAH acted as a reversible domain. The synergistic effect of the fixed and reversible domains determined the shape memory behavior of the blends. When the blend ratio of PAM/PE-g-MAH was 30/70, the composites exhibited the best shape memory properties, with a shape fixity ratio of 95.5% and a shape recovery ratio of 79.8%.  相似文献   

17.
A series of shape‐memory epoxy thermosets were synthesized by crosslinking diglycidyl ether of bisphenol A with mixtures of commercially available hyperbranched poly(ethyleneimine) and polyetheramine. Thermal, mechanical and shape‐memory properties were studied and the effect on them of the content and structure of the hyperbranched polymer was discussed. Measurements showed that the glass transition temperature can be tailored from 60 °C to 117 °C depending on the hyperbranched polymer content, and all formulations showed an appropriate glassy/rubbery storage modulus ratio. Shape‐memory programming was carried out at TgE′ given the excellent mechanical properties of the materials, with maximum stress and failure strain up to 15 MPa and 60%, respectively. The resulting shape‐memory behavior was excellent, with maximum shape recovery and shape fixity of 98% as well as a fast shape‐recovery rate of 22%/min. The results show that hyperbranched poly(ethyleneimine) as a crosslinking agent can be used to enhance mechanical and shape‐memory properties with different effects depending on the crosslinking density. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 924–933  相似文献   

18.
The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L ‐lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen‐bonded N? H stretching band. The interconversion between the “free” and hydrogen‐bonded N? H and C?O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C?O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 °C/min or higher, the crystallization of the PLLA soft segments was prohibited. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 685–695, 2009  相似文献   

19.
In recent years, shape memory polyurethane (SMPU) as a smart material has been used in various applications owing to its desirable shape memory effect and biocompatibility. In this study, unidirectional SMPU nanofibers are innovated by electrospinning to clarify the mechanical and shape memory properties with nanofiber directions. The results showed that when the nanofiber alignment degree is 0° (parallel to the tensile direction), the aligned SMPU nanofibers achieved the obvious improvement of tensile strength (increased to 135%) and elastic modulus (increased to 313%), compared with the random SMPU nanofiber. Moreover, the developed aligned nanofibers exhibited good ability against stress relaxation and creep under constant strain or constant stress conditions in cyclic loading. The aligned SMPU nanofibers with a 0° alignment degree exhibited excellent shape memory properties with shape recovery rates larger than 93% and shape fixity rates larger than 90%, and a dramatic increase of shape recovery stress.  相似文献   

20.
A series of shape memory polyurethanes were synthesized from poly(tetramethylene glycol), 4,4‐methylene diphenyl diisocyanate, and 1,3‐butanediol. The prepolymers with different molecular weights (Mc) were capped with 2‐hydroxyl ethylacrylate or 3‐aminopropyltriethoxysilane (APTES) and crosslinked by UV curing or a sol–gel reaction. Variations of the crosslinker functionality (f), subchain density (N), and hard segment content (HSC) produced systematic variations of the glass transition temperature (6–45 °C), accompanied by changes in the mechanical, dynamic mechanical and shape memory properties. More than 95% of shape fixity and 98% of shape recovery up to the fourth cycles were obtained with APTES crosslinked 3000Mc with 30% of HSC. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1473–1479  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号