首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ordered structures in the form of quasi-nanowires were obtained from CdSe/ZnS fluorescent semiconductor nanoparticles of spherical (quantum dots) or rodlike (quantum rods) form by their electrostatic deposition on DNA molecules with subsequent stretching of the molecules on a solid substrate. Positively charged nanoparticles were fixed along the negatively charged backbones of DNA molecules by electrostatic interactions in an aqueous solution of a mixture of DNA with quantum particles at different stoichiometric ratios. Strands of single DNA molecules with quantum particles fixed along them were immobilized and stretched on hydrophobic surfaces using the molecular combing technique. It is shown that, by varying the nanoparticle charge and the stoichiometry of complexes of DNA with particles, it is possible to create fluorescent structures with predetermined morphology and properties.  相似文献   

2.
Magnetic nanoparticles (MNPs) are widely used in the areas of biology and biomedicine. The interaction between MNPs and proteins plays a crucial role in the bioapplication of MNPs, and the binding affinity of protein–MNPs is the manifestation of this interaction. The binding affinity of some proteins with MNPs modified in various ways is determined by fluorescence quenching. The results show that the binding affinity depends on the properties of both the MNPs and the proteins. The higher the surface curvature of MNPs, the larger the MNP, and the higher the binding affinity. No significant difference is found in binding affinity between MNPs with different modification methods. For proteins, the binding affinity depends on the properties of individual proteins, such as the amino acid sequence, the native protein conformation in solution, the isoelectric point, and surface potential. In general, the binding affinity is higher for proteins with cysteine residues on the surface. In addition, pH affects the binding affinity between proteins and MNPs; positively charged proteins and lower pH are more suitable for MNP binding due to electrostatic forces.  相似文献   

3.
A one‐step strategy to fabricate magnetically stirrable microparticles with geometric/chemical anisotropies via a microfluidic technique combined with partial phase separation is presented. Monodisperse oil‐in‐water microemulsions composed of magnetite nanoparticles (MNPs) and two polymers, polystyrene and poly(d ,l ‐lactide‐co‐glycolide) (PLGA), dissolved in chloroform are generated using the microfluidic method. Upon incubating the microemulsions in pure water at ambient conditions, the solvent contained in the microemulsions is gradually removed and partial phase separation between the two polymers occurs spontaneously. In the meantime, the microemulsion droplets are vertically aligned due to the density difference of the two polymer phases. During the spontaneous phase separation, the MNPs become unstable and the aggregated MNPs segregate downward by gravity to the denser PLGA phase. After complete removal of the solvent, the resulting particles adopt geometric/chemical anisotropies, and they are magnetically rotatable under an external magnetic field. It is demonstrated that the morphology of the anisotropic particles can be controlled readily by adjusting the ratio of the two polymers as well as the concentration of MNPs. It is believed that the developed method based on the partial phase separation and the gravity‐induced segregation of the MNPs enables large‐scale production of magnetically stirrable microparticles.  相似文献   

4.
Here we report the synthesis of 2–5 nm size gold nanoparticle labels for surface‐enhanced Raman Spectroscopy (SERS) based immunoassay to detect protein molecules. The Au nanoparticles were conjugated with fluorescein isothiocyanate (FITC) and goat anti‐h‐IgG (immunoglobin) and the resultant particles were used for the detection of h‐IgG. Commercially available nitrocellulose strip and silver enhancement method were used for SERS‐based immunoassays. The FITC acts as a Raman probe, and vibrational fingerprint of this molecule was used for the detection of h‐IgG in concentration ranging from 1 to 100 ng/µl. Our Raman probe is robust and small in size and has high water solubility with minimum steric effect during antigen–antibody binding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
An electrical method to trap and release charged gold nanoparticles onto and from the surface of gold electrodes modified by an alkanethiol self-assembled monolayer (SAM) is presented. To form electrodes coated with gold nanoparticles (GNPs), amine-terminated SAMs on gold electrodes were immersed in a solution of negatively charged citrate-capped GNPs. Accumulation of GNPs on the electrode surface was monitored by a decrease in the impedance of the SAM-modified electrode and by an increase in the electrochemical activity at the electrode as shown through cyclic voltammetry (CV). Electrostatic interactions between the GNPs and the amine-terminated SAM trap the GNPs on the electrode surface. Application of a subsequent negative bias to the electrode initiated a partial release of the GNPs from the electrode surface. Impedance spectroscopy, cyclic voltammetry, ultraviolet-visible (UV-Vis) spectroscopy and atomic force microscopy (AFM) were used to monitor and confirm the attraction of GNPs to and release from the aminealkanethiolated gold electrodes. This work describes a method of trapping and release for citrate-capped GNPs that could be used for on-demand nanoparticle delivery applications such as in assessing and modeling nanoparticle toxicology, as well as for monitoring the functionalization of gold nanoparticles.  相似文献   

6.
Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.  相似文献   

7.
We investigated the interactions between dendrimer-coated magnetite nanoparticles (MNPs) and the protein serum albumin. The investigation was based on the fluorescence quenching of tryptophan residue of serum albumin after binding with the dendrimer-coated magnetite nanoparticles. The extent of the interactions between bovine serum albumin and dendrimer-coated MNPs strongly depends on their surface groups and pH value.  相似文献   

8.
A simple and efficient principle for nanopatterning with wide applicability in the sub‐50 nanometer regime is chemisorption of nanoparticles; at homogeneous substrates, particles carrying surface charge may spontaneously self‐organize due to the electrostatic repulsion between adjacent particles. Guided by this principle, a method is presented to design, self‐assemble, and chemically functionalize gradient nanopatterns where the size of molecular domains can be tuned to match the level corresponding to single protein binding events. To modulate the binding of negatively charged gold nanoparticles both locally (<100 nm) and globally (>100 μm) onto a single modified gold substrate, ion diffusion is used to achieve spatial control of the particles’ mutual electrostatic interactions. By subsequent tailoring of different molecules to surface‐immobilized particles and the void areas surrounding them, nanopatterns are obtained with variable chemical domains along the gradient surface. Fimbriated Escherichia coli bacteria are bound to gradient nanopatterns with similar molecular composition and macroscopic contact angle, but different sizes of nanoscopic presentation of adhesive (hydrophobic) and repellent poly(ethylene) glycol (PEG) domains. It is shown that small hydrophobic domains, similar in size to the diameter of the bacterial fimbriae, supported firmly attached bacteria resembling catch‐bond binding, whereas a high number of loosely adhered bacteria are observed on larger hydrophobic domains.  相似文献   

9.
The size, surface charge and agglomeration state of nanoparticles under physiological conditions are fundamental parameters to be determined prior to their application in toxicological studies. Although silica-based materials are among the most promising candidates for biomedical applications, more systematic studies concerning the characterisation before performing toxicological studies are necessary. This interest is based on the necessity to elucidate the mechanisms affecting its toxicity. We present here TEM, SAXS and SMPS as a combination of methods allowing an accurate determination of single nanoparticle sizes. For the commercial material, Ludox TM50 single particle sizes around 30 nm were found in solution. DLS measurements of single particles are rather affected by polydispersity and particles concentration but this technique is useful to monitor their agglomeration state. Here, the influence of nanoparticle concentration, ionic strength (IS), pH and bath sonication on the agglomeration behaviour of silica particles in solution has been systematically investigated. Moreover, the colloidal stability of silica particles in the presence of BSA has been investigated showing a correlation between silica and protein concentrations and the formation of agglomerates. Finally, the colloidal stability of silica particles in standard cell culture medium has been tested, concluding the necessity of surface modification in order to preserve silica as primary particles in the presence of serum. The results presented here have major implications on toxicity investigations because silica agglomeration will change the probability and uptake mechanisms and thereby may affect toxicity.  相似文献   

10.
A new chemical vapor deposition (CVD) method, called ionization CVD, was developed, to produce non-agglomerated nanoparticles in which reactant gases are charged. A sonic-jet corona discharger was used as an ionizer in the developed nanoparticle generator. For a tetraethylorthosilicate (TEOS)/O2 chemical system, SiO2 nanoparticles were prepared. All particles formed by the ionization CVD were charged unipolarly. SEM micrographs of particles showed that the repulsive Coulombic force between charged particles reduces their coagulation rate and produces non-agglomerated nanoparticles that have a relatively high number concentration and small size. An external field was used to collect the charged particles onto Si wafers. These collected samples indicated that the deposition of charged particles could be controlled by the external electric field. Particle concentration measurement with a condensation nucleus counter at various TEOS concentrations suggested the particle formation mechanism in the ionization CVD was an ion-induced nucleation.  相似文献   

11.
Mixing in aqueous solutions polyelectrolyte-neutral block copolymers with oppositely charged species, spontaneously forms stable core-shell complexes, which are electrostatically driven. We report here on the structural and orientational properties of such mixed magnetic nanoclusters made of magnetic iron oxide nanoparticles (MNPs) and polyelectrolyte-neutral block copolymers. Small angle neutron scattering and transmission electron microscopy experiments allows to probe the inner-core nanoparticle organization, leading to an average interparticle distance and confirming the hierarchical internal structure of the clusters. Thanks to the MNP optical anisotropy, we also probe the under-magnetic field orientational properties of the core-shell clusters and their dynamical rotational relaxation.  相似文献   

12.
《Current Applied Physics》2014,14(5):761-767
Short composite nanofibers were fabricated by electrospinning polymer/TiO2 nanoparticle solutions of 13 wt. % cellulose acetate as a polymer under a voltage of 5.5 kV and at a flow rate of 0.1 μL/min, and the nanoparticles could be added in concentrations as high as 50 wt. %. The length of the short composite nanofibers was significantly decreased from 112 to 70 μm by the addition of at least a 5 wt. % concentration of nanoparticles, and it gradually continued to decrease as the nanoparticle concentration was increased. The length of the short composite nanofibers with a low concentration of nanoparticles was affected by the surface charge of the nanoparticles, and negatively charged nanoparticles readily dispersed to the negatively charged polymers in solution, which resulted in an elongation of the fabricated short composite nanofibers.  相似文献   

13.
The interaction between gold nanoparticles and bovine serum albumin (BSA) in aqueous solutions was studied. The formation of nanoparticle—BSA associates was demonstrated, which is expressed in a bathochromic shift of the surface plasmon resonance band by 5–6 nm in the absorption spectrum. The results were approximated using the Drude model for metal spheres. The thickness of the dielectric (protein) shell of the nanoparticle and its permittivity (refractive index) were calculated.  相似文献   

14.
The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe3O4). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH4OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8?nm for CS MNPs in TEM and between 58 and 103?nm in DLS. The average diameters of bare MNPs were found as around 18?nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23?% by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging?(MRI), and magnetic hyperthermia.  相似文献   

15.
In this report, we described the preparation of Cu2+/nitrilotriacetic acids (NTA)-derivatized branch polyglycerol magnetic nanoparticles for protein adsorption with avoidance of nonspecific interactions at the same time. Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation method. The transmission electron microscopy results showed that the average diameter of MNPs was 15.8 ± 4.6 nm. X-ray photoelectron spectroscopy and Fourier Transform infrared measurements indicated that branch polyglycerols were grafted on MNPs via the ring-opening polymerization of glycidol and that Cu2+ ions had been successfully immobilized on the surface of MNPs. The protein immobilization effect was characterized by UV–Vis spectrum. The results proved that Cu2+/NTA-derivatized branch polyglycerol magnetic nanoparticles effectively adsorbed bovine haemoglobin and rarely adsorbed lysozyme and γ-globin.  相似文献   

16.
In mixtures of nanoparticles of various sizes or compositions, monitoring protein partitioning on their surfaces provides important information about particle–protein interactions during competitive adsorption. Utilizing the size‐resolving capability of differential centrifugal sedimentation, the adsorption of bovine serum albumin on multisize gold nanoparticles with diameters ranging from 20 to 100 nm or gold, silver, and silica nanoparticles with similar diameter can be concurrently observed. This method can be used to gain insight into nanoparticle–protein interactions based on analyses of curvature and relative abundance.  相似文献   

17.
A facile template‐based approach toward zwitterionic SiO2NH2‐Au patchy particles is presented. Therefore, wrinkle templates prepared by stress release in a bilayer system comprised of an elastic PDMS fundament and a thin SiOx top layer are used. After aligning positively charged, amine‐functionalized silica particles in wrinkle grooves, their surfaces are partially modified with negatively charged gold nanoparticles in an electrostatic adsorption step. Patchiness is precisely controlled by the degree of immersion of the initial particles into wrinkles of varying dimensions. By ultrasonication or wetting with a water droplet, patchy particles are easily released from the substrate‐yielding particles with two oppositely charged hemispheres. Interfacial tension measurements prove the surface activity of the SiO2NH2‐Au particles in an oil/water system and are explained in the view of the Janus‐type surface charges of the particles and the charge of the oil/water interface.  相似文献   

18.
The nonlinear propagation of ultra-low-frequency dust-acoustic (DA) waves in a strongly coupled cryogenic dusty plasma has been investigated, by using the Boltzmann distributed electrons and ions, as well as modified hydrodynamic equations for strongly coupled charged dust grains. The reductive perturbation technique is used to derive the Burger equation. It is shown that strong correlations among negatively charged dust particles acts like a dissipation, which is responsible for the formation of the DA shock waves. The latter are associated with the negative potential, i.e. with the compression of negatively charged cryogenic dust particle density. It is also found that the effective dust-temperature, which arises from electrostatic interactions among negatively charged dust particles, significantly affects the height of the DA shock structures. New laboratory experiments at cryogenic temperature should be conducted to verify our theoretical prediction.  相似文献   

19.
In this work, the use of patterned proteins and peptides for the deposition of gold nanoparticles on several substrates with different surface chemistries is presented. The patterned biomolecule on the surface acts as a catalyst to precipitate gold nanoparticles from a precursor solution of HAuCl4 onto the substrate. The peptide patterning on the surfaces was accomplished by physical adsorption or covalent attachment. It was shown that by using covalent attachment with a linker molecule, the influence of the surface properties from the different substrates on the biomolecule adsorption and subsequent nanoparticle deposition could be avoided. By adjusting the reaction conditions such as pH or HAuCl4 concentration, the sizes and morphologies of deposited gold nanoparticle agglomerates could be controlled. Two biomolecules were used for this experiment, 3XFLAG peptide and bovine serum albumin (BSA). A micro-transfer molding technique was used to pattern the peptides on the substrates, in which a pre-patterned poly(dimethylsiloxane) (PDMS) mold was used to deposit a lift-off pattern of polypropylmethacrylate (PPMA) on the various substrates. The proteins were either physically adsorbed or covalently attached to the substrates, and an aqueous HAuCl4 solution was applied on the substrates with the protein micropatterns, causing the precipitation of gold nanoparticles onto the patterns. SEM, AFM, and Electron Beam Induced Current (EBIC) were used for characterization.  相似文献   

20.
Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4–21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号