首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of palladium complexes ( 2a–2g ) ( 2a : [6‐tBu‐2‐PPh2‐C6H3O]PdMe(Py); 2b : [6‐C6F5–2‐PPh2‐C6H3O]PdMe(Py); 2c : [6‐tBu‐2‐PPhtBu‐C6H3O]PdMe(Py); 2d : [2‐PPhtBu‐C6H4O] PdMe(Py); 2e : [6‐SiMe3–2‐PPh2‐C6H3O]PdMe(Py); 2f : [2‐tBu‐6‐(Ph2P=O)‐C6H3O]PdMe(Py); 2g : [6‐SiMe3–2‐(Ph2P=O)‐C6H3S]PdMe(Py)) bearing phosphine (oxide)‐(thio) phenolate ligand have been efficiently synthesized and characterized. The solid‐state structures of complexes 2d , 2f and 2g have been further confirmed by single‐crystal X‐ray diffraction, which revealed a square‐planar geometry of palladium center. In the presence of B(C6F5)3, these complexes can be used as catalysts to polymerize norbornene (NB) with relatively high yields, producing vinyl‐addition polymers. Interestingly, 2a /B(C6F5)3 system catalyzed the polymerization of NB in living polymerization manner at high temperature (polydispersity index 1.07, Mn up to 1.5 × 104). The co‐polymerization of NB and polar monomers was also studied using catalysts 2a and 2f . All the obtained co‐polymers could dissolve in common solvent.  相似文献   

2.
A series of novel titanium(IV) complexes bearing tetradentate [ONNO] salan type ligands: [Ti{2,2′‐(OC6H3‐5‐t‐Bu)2‐NHRNH}Cl2] (Lig1TiCl2: R = C2H4; Lig2TiCl2: R = C4H8; Lig3TiCl2: R = C6H12) and [Ti{2,2′‐(OC6H2‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4TiCl2) were synthesized and used in the (co)polymerization of olefins. Vanadium and zirconium complexes: [ M{2,2′‐(OC6H3‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4VCl2: M = V; Lig4ZrCl2: M = Zr) were also synthesized for comparative investigations. All the complexes turned out active in 1‐octene polymerization after activation by MAO and/or Al(i‐Bu)3/[Ph3C][B(C6F5)4]. The catalytic performance of titanium complexes was strictly dependent on their structures and it improves for the increasing length of the aliphatic linkage between nitrogen atoms (Lig1TiCl2 << Lig2TiCl2 < Lig3TiCl2) and declines after adding additional tert‐Bu group on the aromatic rings (Lig3TiCl2 < Lig4TiCl2). The activity of all titanium complexes in ethylene polymerization was moderate and the properties of polyethylene was dependent on the ligand structure, cocatalyst type, and reaction conditions. The Et2AlCl‐activated complexes gave polymers with lover molecular weights and bimodal distribution, whereas ultra‐high molecular weight PE (up to 3588 kg mol?1) and narrow MWD was formed for MAO as a cocatalyst. Vanadium complex yielded PE with the highest productivity (1925.3 kg molv?1), with high molecular weight (1986 kg mol?1) and with very narrow molecular weight distribution (1.5). Copolymerization tests showed that titanium complexes yielded ethylene/1‐octene copolymers, whereas vanadium catalysts produced product mixtures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2111–2123  相似文献   

3.
A series of group 4 metal complexes bearing amine‐bis(phenolate) ligands with the amino side‐arm donor: (μ‐O)[Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)2ZrCl]2 ( 1a ), R2N(CH2)2N(CH2‐2‐O‐3‐R1‐5‐R2‐C6H2)2TiCl2 (R = Me, R1, R2 = tBu ( 2a ), R = iPr, R1, R2 = tBu ( 2b ), R = iPr, R1 = tBu, R2 = OMe ( 2c )), and Me2N(CH2)2N(CH2‐2‐O‐3,5‐tBu2‐C6H2)(CH2‐2‐O‐C6H4)TiCl2 ( 2d ) are used in ethylene and propylene homopolymerization, and ethylene/1‐octene copolymerization. All complexes, upon their activation with Al(iBu)3/Ph3CB(C6F5)4, exhibit reasonable catalytic activity for ethylene homo‐ and copolymerization giving linear polyethylene with high to ultra‐high molecular weight (600·× 103–3600·× 103 g/mol). The activity of 1a /Al(iBu)3/Ph3CB(C6F5)4 shows a positive comonomer effect, leading to over 400% increase of the polymer yield, while the addition of 1‐octene causes a slight reduction of the activity of the complexes 2a‐2d . The complexes with the NMe2 donor group ( 2a , 2d , 1a ) display a high ability to incorporate a comonomer (up to 9–22 mol%), and the use of a bulkier donor group, N(iPr)2 ( 2b , 2c ), results in a lower 1‐octene incorporation. All the produced copolymers reveal a broad chemical composition distribution. In addition, the investigated complexes polymerized propylene with the moderate ( 1a , 2a ) to low ( 2b‐2d ) activity, giving polymers with different microstructures, from purely atactic to isotactically enriched (mmmm = 28%). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2467–2476  相似文献   

4.
The (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)V(OiPr)3] was demonstrated to undergo ligand exchange reaction with one or two equivalents of 2,6‐difluorophenol, affording the (arylimido)vanadium(V) compounds, [(p‐MeOC6H4N)V(OiPr)2(O‐2,6‐F2Ph)] and [(p‐MeOC6H4N)V(OiPr)(O‐2,6‐F2Ph)2]. Their X‐ray crystallographic analyses elucidated the μ‐isopropoxido‐bridged dimeric structures, wherein each vanadium atom has a trigonal‐bipyramidal arrangement with the imido and bridging isopropoxide ligands in the apical positions. The isopropoxide ligand was selectively employed as a bridging ligand between two central vanadium atoms. On the other hand, the reaction of the (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)VCl3] and three equivalents of lithium 2,6‐difluorophenoxide gave the (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)V(O‐2,6‐F2Ph)3]. In the crystal packing, the thus‐obtained compound showed a distorted trigonal‐bipyramidal environment at the vanadium atoms with the μ‐phenoxido‐bridged dimeric structure, wherein the 2,6‐difluorophenoxide ligand was found to serve as a bridging ligand.  相似文献   

5.
Several phenoxy-imine ligands bearing o-trityl group in phenoxy moiety RN=CHArOH (Ar = C6H2(CPh3)tBu, R = 2,6-Me2C6H3 ( L 1 H ); 2,6-iPr2C6H3 ( L 2 H ); 3,5-(CF3)2C6H3 ( L 3 H ); 3,5-(OMe)2C6H3 ( L 4 H ); CHPh2 ( L 5 H ); CPh3 ( L 6 H )) were synthesized and characterized by1H NMR and 13C NMR spectroscopy. The vanadium complexes based on these ligands LVCl2(THF)2 ( 1–6 ) were synthesized via conventional transmetalation reaction in moderate to high yields. Complexes 1–6 were fully characterized by FT-IR, elemental analyses and the molecular structures of 1 , 2 ·H2O, (2 ·H2O ) 2 (μ-Cl) 2 , 4 , and 5 were confirmed by X-ray crystallographic analysis in which the six-coordinated vanadium centers are in a typical octahedral geometry. Upon activation with Et2AlCl in toluene, complexes 1–6 showed high activities in ethylene polymerization affording polymers with moderate molecular weight (5.9–11.8 × 104 Da). Moreover, in hexane or CH2Cl2, 1–6 /Et2AlCl exhibited enhanced activities. When activated with MAO or MMAO in toluene, these complexes showed relatively low activities but afforded polymers with ultra-high molecular weight (up to 3.30 × 106 Da). 1–6 /Et2AlCl also showed high activities in ethylene/1-hexene copolymerization at room temperature giving moderate molecular-weight polymers (6.5–11.4 × 104 Da) with co-monomer incorporation being of 6.0 ~ 7.8%.  相似文献   

6.
Eight Cs‐symmetric complexes, R1R2C(Cp)(Flu)MCl2 [R1 = R2 = CH3CH2CH2, M = Zr (1), Hf (2); R1 = R2 = p? CH3OC6H4, M = Zr (3), Hf (4); R1 = p? tBuC6H4, R2 = Ph, M = Zr (5), Hf (6); R1 = R2 = p? tBuC6H4, M = Zr (7); R1 = R2 = PhCH2, M = Zr (8)] have been synthesized and characterized. Zirconocenes all showed the same high catalytic activities in ethylene polymerization as complex Ph2C(Cp)(Flu)ZrCl2 (9). However, in the propylene polymerization, the catalytic activities decreased in the order 5 ≈ 9 > 7 > 8. Introduction of tBu decreased the activities, probably due to the bulk steric hindrance. The polypropylene produced by 5 and 7 with tBu substituent showed a higher molecular weight (Mη) than that produced by 9. The 13C NMR spectrum revealed the polymers from 7 and 8 to have shorter average syndiotactic block length than polymer produced by 9. It was noted that [mm] stereodefect of polypropylene by 8 could not be observed from 13C NMR, which showed that the benzyl on bridge carbon 8 prevented chain epimerization and enatiofacial misinsertion in polymerization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Eight new R1CpTiCl2(OC(C6H4R2)Ph2) complexes were synthesized by the reaction of R1CpTiCl3 with Ph2(R2C6H4)COH (R2C6H4 = phenyl or o‐methyl‐phenyl) in the presence of Et3N in good yield and characterized by 1H NMR, elemental analysis, IR and mass spectrometry. A suitable single crystal of complex 2 (R1: CH3, R2: H) was obtained and the structure determined by X‐ray diffraction. When activated by methylaluminoxane (MAO), all complexes were active for the polymerization of ethylene and styrene. The effect of variation in temperature, catalyst concentration and MAO/catalyst molar ratio was also studied. Complex 5 (R1: n‐C4H9, R2: H) showed a moderate conversion (37.4%) for the polymerization of methyl methacrylate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A series of triphenylarsenic(V) derivatives Ph3As(OPri)[SC6H4N:C(R)CH2C(O)R′] have been synthesized by the reactions of triphenylarsenic(V)‐ isoproproxide, Ph3As(OPri)2 with the corresponding 2,2‐disubstituted benzothiazolines of the type (where R = CH3, R′ = CH3( 1 ); R = CH3, R′ = C6H5( 2 ); R = CH3, R′ = 4‐CH3C6H4( 3 ); R = CH3, R′ = 4‐ClC6H4( 4 ); and R = CF3, R′ = C6H5( 5 )) in equimolar ratio in refluxing benzene solution. Molecular weight measurements of these complexes show their monomeric nature in solution. Characterization of these compounds using elemental analyses, molecular weight measurements, and spectral studies (IR as well as NMR (1H and 13C)) shows the monofunctional bidentate nature of the ligands and a hexacoordination around the central arsenic atom in these organoarsenic(V) derivatives. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:76–80, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20233  相似文献   

9.
Three new (N‐diphenylphosphino)‐isopropylanilines, having isopropyl substituent at the carbon 2‐ (1) 4‐ (2) or 2,6‐ (3) were prepared from the aminolysis of chlorodiphenylphosphine with 2‐isopropylaniline, 4‐isopropylaniline or 2,6‐diisopropylaniline, respectively, under anaerobic conditions. Oxidation of 1,2 and 3 with aqueous hydrogen peroxide, elemental sulfur or gray selenium gave the corresponding oxides, sulfides and selenides (Ph2P?E)NH? C6H4? 2‐CH(CH3)2, (Ph2P?E)NH? C6H4? 4‐CH(CH3)2 and (Ph2P?E)NH? C6H4? 2,6‐{CH(CH3)2}2, where E = O, S, or Se, respectively. The reaction of [M(cod)Cl2] (M = Pd, Pt; cod = 1,5‐cyclooctadiene) with two equivalents of 1,2 or 3 yields the corresponding monodendate complexes [M((Ph2P)NH? C6H4? 2‐CH(CH3)2)2Cl2], M = Pd 1d, M = Pt 1e, [M((Ph2P)NH? C6H4? 4‐CH(CH3)2)2Cl2], M = Pd 2d, M = Pt 2e and [M((Ph2P)NH? C6H4? 2,6‐(CH(CH3)2)2)2Cl2], M = Pd 3d, M = Pt 3e, respectively. All the compounds were isolated as analytically pure substances and characterized by NMR, IR spectroscopy and elemental analysis. Furthermore, representative solid‐state structure of [(Ph2P?S)NH? C6H4? 4‐CH(CH3)2] (2b) was determined using single crystal X‐ray diffraction technique. The complexes 1d–3d were tested and found to be highly active catalysts in the Suzuki coupling and Heck reaction, affording biphenyls and stilbenes, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Various (adamantylimido)vanadium(V) dialkyl complexes containing aryloxo ligands, V(NAd)(CH2SiMe3)2(OAr) [Ad = 1-adamantyl (1); Ar = Ph (a), 4-FC6H4 (b), 2,6-F2C6H3 (c), 2,6-Me2C6H3 (d), C6F5 (e)], have been prepared and identified. These complexes were employed as the catalyst precursors for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) in the presence of PMe3 at 80 °C. The activity was strongly affected by the aryloxo substituent and increased in the order: C6H5 < 4-FC6H4 < 2,6-Me2C6H3 << 2,6-F2C6H3, C6F5. The same trend was observed in the ROMPs by the arylimido-aryloxo analogues, V(NAr′)(CH2SiMe3)2(OAr) (2a-e; Ar′ = 2,6-Me2C6H3), under the same conditions, and the activities by the arylimido analogues were generally higher than the adamantylimido analogues in most case. The (imido)vanadium(V) complexes containing O-2,6-F2C6H3 (1,2c) or OC6F5 (1,2e) exhibited high catalytic activities, and these results strongly suggest that electronic as well as steric factors play a role. Living ring-opening polymerization of THF proceeded in the presence of V(NAd) (CH2SiMe3)(OAr)2 (Ar = 2,6-Me2C6H3, C6F5) and [Ph3C][B(C6F5)4], affording high molecular weight polymers with narrow molecular weight distributions (ex. Mn = 2.11 × 105, Mw/Mn = 1.18).  相似文献   

11.
A series of novel zirconium complexes {R2Cp[2‐R1‐6‐(2‐CH3OC6H4N?CH)C6H3O]ZrCl2 ( 1 , R1 = H, R2 = H, 2 : R1 = CH3, R2 = H; 3 , R1 = tBu, R2 = H; 4 , R1 = H, R2 = CH3; 5 , R1 = H, R2 = n‐Bu)} bearing mono‐Cp and tridentate Schiff base [ONO] ligands are prepared by the reaction of corresponding lithium salt of Schiff base ligands with R2CpZrCl3·DME. All complexes were well characterized by 1H NMR, MS, IR and elemental analysis. The molecular structure of complex 1 was further confirmed by X‐ray diffraction study, where the bond angle of Cl? Zr? Cl is extremely wide [151.71(3)°]. A nine‐membered zirconoxacycle complex Cp(O? 2? C6H4N?CHC6H4‐2? O)ZrCl2 ( 6 ) can be obtained by an intramolecular elimination of CH3Cl from complex 1 or by the reaction of CpZrCl3·DME with dilithium salt of ligand. When activated by excess methylaluminoxane (MAO), complexes 1–6 exhibit high catalytic activities for ethylene polymerization. The influence of polymerization temperature on the activities of ethylene polymerization is investigated, and these complexes show high thermal stability. Complex 6 is also active for the copolymerization of ethylene and 1‐hexene with low 1‐hexene incorporation ability (1.10%). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A series of rare‐earth‐metal–hydrocarbyl complexes bearing N‐type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH2SiMe3)3(thf)2] with equimolar amount of the electron‐donating aminophenyl‐Cp ligand C5Me4H‐C6H4o‐NMe2 afforded the corresponding binuclear monoalkyl complex [({C5Me4‐C6H4o‐NMe(μ‐CH2)}Y{CH2SiMe3})2] ( 1 a ) via alkyl abstraction and C? H activation of the NMe2 group. The lutetium bis(allyl) complex [(C5Me4‐C6H4o‐NMe2)Lu(η3‐C3H5)2] ( 2 b ), which contained an electron‐donating aminophenyl‐Cp ligand, was isolated from the sequential metathesis reactions of LuCl3 with (C5Me4‐C6H4o‐NMe2)Li (1 equiv) and C3H5MgCl (2 equiv). Following a similar procedure, the yttrium‐ and scandium–bis(allyl) complexes, [(C5Me4‐C5H4N)Ln(η3‐C3H5)2] (Ln=Y ( 3 a ), Sc ( 3 b )), which also contained electron‐withdrawing pyridyl‐Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl‐Flu ligand (C13H9‐C5H4N) by [Ln(CH2SiMe3)3(thf)2] generated the rare‐earth‐metal–dialkyl complexes, [(η3‐C13H8‐C5H4N)Ln(CH2SiMe3)2(thf)] (Ln=Y ( 4 a ), Sc ( 4 b ), Lu ( 4 c )), in which an unusual asymmetric η3‐allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium–trisalkyl complex [Y(CH2C6H4o‐NMe2)3], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η3‐C13H8‐C5H4N)Y(CH2C6H4o‐NMe2)2] ( 5 ). Complexes 1 – 5 were fully characterized by 1H and 13C NMR and X‐ray spectroscopy, and by elemental analysis. In the presence of both [Ph3C][B(C6F5)4] and AliBu3, the electron‐donating aminophenyl‐Cp‐based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph3C][B(C6F5)4] only, the electron‐withdrawing pyridyl‐Cp‐based complexes 3 , in particular scandium complex 3 b , exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99 %) polystyrene, whereas their bulky pyridyl‐Flu analogues ( 4 and 5 ) in combination with [Ph3C][B(C6F5)4] and AliBu3 displayed much‐lower activity to afford syndiotactic‐enriched polystyrene.  相似文献   

13.
A new series of monoselenoquinone and diselenoquinone π complexes, [(η6p‐cymene)Ru(η4‐C6R4SeE)] (R=H, E=Se ( 6 ); R=CH3, E=Se ( 7 ); R=H, E=O ( 8 )), as well as selenolate π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Se)][SbF6] (R=H ( 9 ); R=CH3 ( 10 )), stabilized by arene ruthenium moieties were prepared in good yields through nucleophilic substitution reactions from dichlorinated‐arene and hydroxymonochlorinated‐arene ruthenium complexes [(η6p‐cymene)Ru(C6R4XCl)][SbF6]2 (R=H, X=Cl ( 1 ); R=CH3, X=Cl ( 2 ); R=H, X=OH ( 3 )) as well as the monochlorinated π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Cl)][SbF6]2 (R=H ( 4 ); R=CH3 ( 5 )). The X‐ray crystallographic structures of two of the compounds, [(η6p‐cymene)Ru(η4‐C6Me4Se2)] ( 7 ) and [(η6p‐cymene)Ru(η4‐C6H4SeO)] ( 8 ), were determined. The structures confirm the identity of the target compounds and ascertain the coordination mode of these unprecedented ruthenium π complexes of selenoquinones. Furthermore, these new compounds display relevant cytotoxic properties towards human ovarian cancer cells.  相似文献   

14.
Group 4 complexes containing diphosphinoamide ligands [Ph2PNR]2MCl2 (3: R = tBu, M = Ti; 4: R = tBu, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [Ph2PNtBu]2TiCl2 (3) was determined by X‐ray crystallography. The phosphinoamides functioned as η2‐coordination ligands in the solid state and the Ti? N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i‐Bu3Al/Ph3BC(C6F5)4, catalytic activity of up to 59.5 kg PE/mol cat h bar was observed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A family of 16 salicylaldarylimine titanium(IV) dichloride complexes bearing diallylamino group, namely {2‐[3‐ or 4‐(CH2?CH? CH2)2NC6H4N?CH]‐6‐R1‐4‐R2‐C6H2O}2TiCl2 (R1 = t‐Bu, CMe2(Ph); R2 = H, Me, OMe, t‐Bu) have been used for polymerization of ethylene in the presence of methylaluminoxane. The effects of reaction conditions on the polymerization were examined in detail. All the pre‐catalyst are highly active (up to 14.0 × 106 g(PE) mol(Ti)?1 ?1 h?1) for ethylene polymerization at 30°С to 60°С with the activities and MM correlating with the R1‐substituent type and position of NAll2‐group: CMe2(Ph) > t‐Bu and meta‐NAll2 > para‐NAll2 for any R2. Highly linear polyethylenes (Tm's as high as 141.0°С) can be obtained with high molecular weights in the range 0.70 to 4.10 × 106 g mol?1 with disentangled morphology, suitable for technologically more advanced and greeny way to produce high‐modulus high‐strength fibers of ultrahigh molecular weight polyethylene via solid‐state (solvent‐free) deformation processing.  相似文献   

16.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

17.
Synthesis and Molecular Structure of the Binuclear tert-Butyliminovanadium(IV) Complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] (X = OtC4H9, CH2CMe3) Syntheses of the neopentylvanadium(V) compounds tC4H9N?V(CH2CMe3)3?n(OtC4H9)n (n = 0 ( 7 ), 1 ( 6 ), 2) are described. 6 and 7 decompose by irradiation splitting off neopentane and yielding the binuclear diamagnetic neopentylvanadium(IV) complexes [(μ-NtC4H9)2V2(CH2CMe3)2X2] [X = OtC4H9 ( 8 ), CH2CMe3 ( 11 )]. All compounds obtained are characterized by 1H and 51V NMR spectroscopy. 8 has been found by X-ray diffraction analysis to be a binuclear complex with bridging tert-butylimino ligands and a vanadium—vanadium single bond. The complexes tC4H9N?V(CH2C6H5)(OtC4H9)2 and [(μ-NtC4H9)2V2(CH2SiMe3)2(OtC4H9)2] ( 10 ) have been also prepared; the crystal structure of 8 and 10 are nearly identical.  相似文献   

18.
Treatment of the chlorides (L2,6‐iPr2Ph)2LnCl (L2,6‐iPr2Ph = [(2,6‐iPr2C6H3)NC(Me)CHC(Me)N(C6H5)]?) with 1 equiv. of NaNH(2,6‐iPr2C6H3) afforded the monoamides (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Y ( 1 ), Yb ( 2 )) in good yields. Anhydrous LnCl3 reacted with 2 equiv. of NaL2,6‐iPr2Ph in THF, followed by treatment with 1 equiv. of NaNH(2,6‐iPr2C6H3), giving the analogues (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Sm ( 3 ), Nd ( 4 )). Two monoamido complexes stabilized by two L2‐Me ligands, (L2‐Me)2LnNH(2,6‐iPr2C6H3) (L2‐Me = [N(2‐MeC6H4)C(Me)]2CH)?; Ln = Y ( 5 ), Yb ( 6 )), were also synthesized by the latter route. Complexes 1 , 2 , 3 , 4 , 5 , 6 were fully characterized, including X‐ray crystal structure analyses. Complexes 1 , 2 , 3 , 4 , 5 , 6 are isostructural. The central metal in each complex is ligated by two β‐diketiminato ligands and one amido group in a distorted trigonal bipyramid. All the complexes were found to be highly active in the ring‐opening polymerization of L‐lactide (L‐LA) and ε‐caprolactone (ε‐CL) to give polymers with relatively narrow molar mass distributions. The activity depends on both the central metal and the ligand (Yb < Y < Sm ≈ Nd and L2‐Me < L2,6‐iPr2Ph). Remarkably, the binary 3/benzyl alcohol (BnOH) system exhibited a striking ‘immortal’ nature and proved able to quantitatively convert 5000 equiv. of L‐LA with up to 100 equiv. of BnOH per metal initiator. All the resulting PLAs showed monomodal, narrow distributions (Mw/Mn = 1.06 ? 1.08), with molar mass (Mn) decreasing proportionally with an increasing amount of BnOH. The binary 4/BnOH system also exhibited an ‘immortal’ nature in the polymerization of ε‐CL in toluene. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A series of metal compounds (M = Al, Ti, W, and Zn) containing pyrrole‐imine ligands have been prepared and structurally characterized. The reactions of AlMe3 with one and three equivs of pyrrole‐imine ligand [C4H3NH‐(2‐CH=N? CH2Ph)] ( 1 ) generated aluminum compounds Al[C4H3N‐(2‐CH=N? CH2Ph)]Me2 ( 2 ) and Al[C4H3N‐(2‐CH=NCH2Ph)]3 ( 3 ), respectively, in relatively high yield. Reacting two equivs of 1 with Ti(OiPr)4, W(NHtBu)2(=NtBu)2, or ZnMe2 afforded Ti[C4H3N‐(2‐CH=NCH2Ph)]2(OiPr)2 ( 4 ), W[C4H3N‐(2‐CH=NCH2Ph)]2(=NtBu)2 ( 5 ), and Zn[C4H3N‐(2‐CH=NCH2Ph)]2 ( 6 ), respectively. All the compounds have been characterized by 1H and 13C NMR spectroscopy. Compounds 3 – 6 have also been characterized by single‐crystal X‐ray structural analysis. The biting angles of pyrrole‐imine ligand with metals decrease and their related M? Npyrrole and M? Nimine bond lengths increase in the order of 6 , 3 , 4 , and 5 .  相似文献   

20.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号