首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

2.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

3.
Aqueous gel deswelling rates for copolymer hydrogels comprising N‐isopropylacrylamide (IPAAm) and 2‐carboxyisopropylacrylamide (CIPAAm) in response to increasing temperatures were investigated. Compared with pure IPAAm‐based gels, IPAAm–CIPAAm gels shrink very rapidly in response to small temperature increases across their lower critical solution temperature (their volume is reduced by five‐sixths within 60 s). Shrinking rates for these hydrogels increase with increasing CIPAAm content. In contrast, structurally analogous IPAAm–acrylic acid (AAc) copolymer gels lose their temperature sensitivity with the introduction of only a few mole percent of AAc. Additionally, deswelling rates of IPAAm–AAc gels decrease with increasing AAc content. These results indicate that IPAAm–CIPAAm copolymer gels behave distinctly from IPAAm–AAc systems even if both comonomers, CIPAAm and AAc, possess carboxylic acid groups. Thus, we propose that the sensitive deswelling behavior for IPAAm–CIPAAm gels results from strong hydrophobic chain aggregation maintained between network polymer chains due to the similar chemical structures of CIPAAm and IPAAm. This structural homology facilitates aggregation of chain isopropylamide groups for both IPAAm and CIPAAm sequences with increasing temperature. The incorporation of AAc, however, shows no structural homology to IPAAm, inhibiting chain aggregation and limiting collapse. A functionalized temperature‐sensitive poly(N‐isopropylacrylamide) hydrogel containing carboxylic acid groups is possible with CIPAAm, producing rapid and large volume changes in response to smaller temperature changes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 335–342, 2001  相似文献   

4.
In this study, the effect of the level of crosslinking on the properties of poly(N‐isopropylacrylamide) (PNIPAAm) hydrogels was investigated in terms of their lower critical solution temperature (LCST), interior morphology, equilibrium swelling, and deswelling and swelling kinetics. The thermal analysis showed that PNIPAAm hydrogels, having a wide range of crosslinking levels, exhibited almost the same LCSTs, and this was different from what the conventional theory would have predicted. Scanning electron micrographs revealed that the interior network structure of the PNIPAAm matrix became more porous with an increase in the level of crosslinking. This more porous matrix provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling process and the swelling process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 582–593, 2003  相似文献   

5.
We report two novel multifunctional copolymers consisting of a temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAA) segment and a fluorescent fluorene‐containing acrylic polymer segment with pH responsiveness and/or DNA‐sensing ability. The functional acrylic monomer with a fluorene dimer side group substituted with amino units was synthesized first. Then, it was copolymerized with N‐isopropylacrylamide to result in a new water‐soluble, fluorescent PNIPAA copolymer ( P1 ). The fluorescent properties of P1 under neutral and acidic conditions did not change with the temperature. However, significant variation was observed under basic conditions. The protonation of the amino moiety at a low pH improved the solubility and prevented aggregation for fluorescence quenching, but not under the basic conditions. Although aggregation of the fluorene units was significant at room temperature under basic conditions, the aggregation was resolved at a temperature above the lower critical solution temperature. These findings indicated the pH‐ and temperature‐responsive characteristics of P1 . Moreover, after the amino groups were quaternized, the obtained polymer could be used as a biosensor because the fluorescence intensity was quenched with the addition of DNA. This study demonstrates that multifunctional materials with pH‐ and temperature‐sensing characteristics and biological molecules could be realized by the incorporation of a functional fluorene‐containing moiety with PNIPAA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5495–5504, 2006  相似文献   

6.
Exothermic nonreversing process is predicted to present in the phase transition of poly(N‐isopropylacrylamide) (PNIPAM). By employing TOPEM‐DSC, exothermic nonreversing heat flow peak is observed for the first time, and it usually appears under nonquasi‐static conditions. The exothermic nonreversing heat flow is proved to be from the formation of hydrogen bonds by the comparative studies on the phase transition of poly(N,N‐diethylacrylamide) (PDEAM) and cyclic heating and cooling of PDEAM and PNIPAM. Further TOPEM‐DSC studies on the phase transition of poly(NIPAM‐co‐DEAM) and poly(NIPAM‐co‐AAm) prove that hydrophobic force rather than hydrogen bonding is the main driving force for the phase transition, and hydrophobic force is also the driving force for the formation of inter‐ and intrachain hydrogen bonding. However, the phase transition driven by only hydrophobic force is a slow process. The combined action of hydrogen bonding and hydrophobic force makes the phase transition occur much faster. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1869–1877  相似文献   

7.
8.
New, water soluble poly(glycidol) (PGl) macroinitiators for atom transfer radical polymerization (ATRP) were synthesized. This new class of macroinitiators were prepared in a three‐step process. First, series of well‐defined ω‐hydroxyl functional poly(glycidol acetal)s with different molecular weights was synthesized via anionic polymerization followed by quantitative termination of anionically growing active sites. End capping was achieved by treatment of living chain ends with water. The living nature of the system and termination reaction is discussed. In the second stage, monofunctional poly(glycidol acetal)s were functionalized by esterification with 2‐chloropropionyl chloride. Finally, selective deprotection (hydrolysis) of acetal protective groups was performed. As simultaneous partial cleavage of ester bond of attached ATRP moieties was unavoidable, the final functionality of macroinitiator calculated from 1H NMR varied in the range 85–95%. The obtained (2‐chloropropionyl) poly(glycidol) macroinitiator with DP = 55 and 90% functionality was successfully used in ATRP polymerization of N‐isopropylacrylamide (NIPAAm) at room temperature in the DMF/water mixture. Linear block copolymers with relatively narrow molecular weight distribution and controlled composition were obtained and characterized with 1H NMR and SEC‐MALLS measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2488–2499, 2008  相似文献   

9.
A series of narrowly distributed poly(N‐isopropylacrylamide) (PNIPAM) with molecular weight ranging from 8 × 104 to 2.3 × 107 g/mol were prepared by a combination of free radical polymerization and fractional precipitation. An ultrasensitive differential scanning calorimetry was used to study the effect of molecular weight on the thermal volume transition of these PNIPAM samples. The specific heat peak of the transition temperature (Tp,0) was obtained by extrapolation to zero heating rate (HR) because of the linear dependence of the transition temperature (Tp) on the HR. The relation between Tp,0 and the degree of polymerization (N) was investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1388–1393, 2010  相似文献   

10.
Two monomers containing functional ? OH groups with different hydrophilic long side chains (viz., triethyleneglycol methacrylate (TREGMA) and polyethyleneglycol methacrylate (PEGMA)) were selected to modify the swelling/deswelling behavior of poly(N‐isopropylacrylamide) (pNIPAM) microgels. Dynamic scattering technique, turbidimetric method, and differential scanning calorimetry (DSC) were employed to investigate the deswelling behavior of the microgels. Experimental results show that the two series of microgels are identical in that incorporation of hydrophilic chains containing ? OH groups causes the volume‐phase transition temperature (VPTT) of pNIPAM microgels to shift to higher temperature; the more hydrophilic the side chains, the more the VPTTs shift. Although PEGMA are more effective in elevating the VPTTs of pNIPAM microgels than TREGMA, p(NIPAM‐co‐TREGMA) microgels show better deswelling properties than p(NIPAM‐co‐PEGMA) microgels, i.e., they have much larger deswelling ratios (α) and display less continuous volume‐phase transition. The VPTTs of the modified microgels can be modulated to well close to the normal body temperature of human beings. These characteristics along with the functional ? OH groups they contain make the microgels competitive candidates for biomaterials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3575–3583, 2005  相似文献   

11.
12.
A functionalized cyclam was synthesized by the attachment of a polymerizable acryloyl group to one of the four nitrogens on the cyclam molecule. The polymerization of the functionalized cyclam was performed with N‐isopropylacrylamide and N,N′‐methylene bisacrylamide, and the gels obtained were studied in the presence of different transition‐metal‐ion solutions. There was a drastic difference in the phase‐transition temperature (Tc) of the poly(N‐isopropylacrylamide) (PNIPAAm)/cyclam gel in comparison with the pure PNIPAAm gel. For the described system, a Tc shift of 15 °C was obtained. The presence of functionalized cyclam increased the hydrophilicity and Tc of the aforementioned polymer gels in deionized water (at pH 6) because of the presence of protonated amino moieties. The PNIPAAm/cyclam gels showed a dependence of the swelling behavior on pH. Tc of the pure PNIPAAm gel was weakly influenced by the presence of any transition‐metal ions, such as Cu2+, Ni2+, Zn2+, and Mn2+. The addition of Cu2+ or Ni2+ to the PNIPAAm/cyclam gel reduced Tc of the polymer gel, and a shift of approximately 12 °C was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1594–1602, 2003  相似文献   

13.
The addition of mixture of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and polystyrene homopolymer (h‐PS) in tetrahydrofuran dropwise into water leads to nanoparticles with a PS core and a thermally sensitive PNIPAM shell. The effects of the ratio of the homopolymer to copolymer and temperature on the formation and stabilization of the dispersion were investigated by using a combination of static and dynamic laser light scattering. PNIPAM shell continuously collapses as temperature increases in the range 20–40 °C. Such formed particles are stable even at temperatures much higher than lower critical solution temperature (LCST ~ 32 °C) of PNIPAM. Our results reveal that the area occupied per hydrophilic PNIPAM chain on the hydrophobic PS core remains nearly a constant regardless of the amount of h‐PS in the polymer mixture. This clearly indicates that the surface area occupied per hydrophilic group is a critical parameter for stabilizing particles dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 749–755, 2010  相似文献   

14.
15.
In this paper, N‐isopropylacrylamide (NIPA) was synthesized by acrylonitrile and isopropanol. Poly(N‐isopropylacrylamide) (PNIPA) was prepared by a chemical method. The dependence of its swelling behavior on temperature was studied. Results showed that PNIPA hydrogel was a temperature‐sensitive gel. Its LCST (lower critical solution temperature) was about 32 °C, and its swelling ratio (at 20 °C) was about 17–18. Sodium acrylate (SA) and sodium methylacrylate (SMA) were copolymerized with NIPA respectively. Equilibrium swelling ratios of the copolymer hydrogels at lower temperature were two to three times that of PNIPA. The LCST of the copolymer hydrogels could be controlled between 32 and 45 °C by adjusting the content of SA or SMA. Kinetics of P(NIPA‐co‐SA) hydrogels, whether swelling or shrinking processes, were in good agreement with apparent second order kinetic equations. Several experiments were designed to separate aqueous bovine serum albumin solution using the hydrogels prepared above. The separation efficiency was about 80%. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The synthesis of sequential full interpenetrating polymer networks (IPNs) based on poly (N‐isopropylacrylamide) (PNIPAAm) and negatively charged poly(N‐vinyl‐2‐pyrrolidone) (PNVP) was described and their swelling, drug release, and diffusion studies were investigated. PNIPAAm was used as a host network. According to swelling experiments, IPNs gave relatively lower swelling ratios compared to PNIPAAm hydrogel due to the higher cross‐linking density. Lidocaine (LD) was used as a model drug for the investigation of drug release behavior of IPNs. LD uptake of the IPNs were found to increase from 24 to 166 (mg LD / g dry gel) with increasing amount of PNIPAAm and AMPS contents in the IPN structure. It was observed that the specific interaction between drug and AMPS co‐monomer influenced the drug release profile. In the diffusion transport mechanism study in water, the results indicated that the swelling exponents n for all IPNs are in the range from 0.50 to 0.72. This implies that the swelling transport mechanism was transferred from Fickian to non‐Fickian transport, with increasing AMPS content and NIPAAm character in the IPN structure. In addition, diffusion of LD within the IPNs showed similar trend. The incorporation of AMPS leads to an increase in electrostatic interaction between charge sites on carboxylate ions and cationic LD molecules. Therefore, the highest diffusion coefficient (D) of drug was found for IPN2 sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

18.
Novel temperature-sensitive poly(N-isopropylacrylamide)/amine-terminated polyamidoamine dendrimer G6-NH2 hydrogels with fast responsive properties were synthesized by forming semi-interpenetrating polymeric networks. In contrast to the conventional PNIPA hydrogel, these new gels showed rapid shrinking rate at the temperature above lower critical solution temperature (LCST), and exhibited higher equilibrium swelling ratio at room temperature. All these properties might be attributed to the incorporation of polyamidoamine dendrimer G6-NH2, which forms water-releasing channels and increases the hydrophilicity of PNIPA network. The novel hydrogels have potential applications in drug and gene delivery.  相似文献   

19.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.

  相似文献   


20.
Radical polymerization of N‐isopropylacrylamide (NIPAAm) in toluene at low temperatures, in the presence of fluorinated‐alcohols, produced heterotactic polymer comprising an alternating sequence of meso and racemo dyads. The heterotacticity reached 70% in triads when polymerization was carried out at ?40 °C using nonafluoro‐tert‐butanol as the added alcohol. NMR analysis revealed that formation of a 1:1 complex of NIPAAm and fluorinated‐alcohol through C?O···H? O hydrogen bonding induces the heterotactic specificity. A mechanism for the heterotactic‐specific polymerization is proposed. Examination of the phase transition behavior of aqueous solutions of heterotactic poly(NIPAAm) revealed that the hysteresis of the phase transition between the heating and cooling cycles depended on the average length of meso dyads in poly(NIPAAm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2539–2550, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号