首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A mass spectrometry analysis has been performed on complex architecture polymeric material produced during reversible addition fragmentation chain transfer (RAFT) polymerizations yielding star polymers. Para‐acetoxystyrene (AcOSty) has been polymerized at 60 °C, using azobisisobutyronitrile (AIBN) as the thermally decomposing initiator, in the presence of the R‐group approach tetrafunctional RAFT agent (1,2,4,5‐tetrakis‐(2‐phenyl‐thioacetyl‐sulfanylmethyl)‐benzene). In addition to ideal star material, a variety of products unique to this mode of polymerization have been identified. These include star–star couples, stars terminated with initiator fragments, star–star couples terminated with initiator fragments and linear polymers, supporting the notion that these species are responsible for the structured molecular‐weight distributions measured for these systems when analyzed via gel permeation chromatography. The analysis begins with a study of AcOSty polymerizing (i) in the absence of any mediating agent and (ii) in the presence of a monofunctional RAFT agent, revealing the mode of termination of propagating poly(AcOSty) radicals as combination and that some ionization biases exist among variants of poly (AcOSty). The interpretation of the mass spectrometry data has been aided by a novel kinetic model of star polymerizations, allowing the rationalization of experimental observations with theoretical expectations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1873–1892, 2008  相似文献   

3.
Well‐defined polyacrylonitrile (PAN) of high viscosity‐average molecular weight (Mη = 405,100 g/mol) was successfully synthesized using reversible addition‐fragmentation chain transfer polymerization. The polymerization exhibits controlled characters: molecular weights of the resultant PANs increasing approximately linearly with monomer conversion and keeping narrow molecular weight distributions. The addition of 0.01 equiv (relative to monomer acrylonitrile) of Lewis acid AlCl3 in the polymerization system afforded the obtained PAN with an improved isotacticity (by 8%). In addition, the influence of molecular weights and molecular weight distributions of PANs on the morphology of the electrospun fibers was investigated. The results showed that, under the same conditions of electrospinning, average diameter (247–1094 nm) of fibers increased with molecular weights of PANs, and it was much easier to get “uniform” diameter fibers while using PANs with narrow molecular weight distributions as the precursor of electrospinning. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

5.
In the reversible addition–fragmentation transfer (RAFT) copolymerization of two monomers, even with the simple terminal model, there are two kinds of macroradical and two kinds of polymeric RAFT agent with different R groups. Because the structure of the R group could exert a significant influence on the RAFT process, RAFT copolymerization may behave differently from RAFT homopolymerization. The RAFT copolymerization of methyl methacrylate (MMA) and styrene (St) in miniemulsion was investigated. The performance of the RAFT copolymerization of MMA/St in miniemulsion was found to be dependent on the feed monomer compositions. When St is dominant in the feed monomer composition, RAFT copolymerization is well controlled in the whole range of monomer conversion. However, when MMA is dominant, RAFT copolymerization may be, in some cases, out of control in the late stage of copolymerization, and characterized by a fast increase in the polydispersity index (PDI). The RAFT process was found to have little influence on composition evolution during copolymerization. The synthesis of the well‐defined gradient copolymers and poly[St‐b‐(St‐co‐MMA)] block copolymer by RAFT miniemulsion copolymerization was also demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6248–6258, 2004  相似文献   

6.
Stimuli-responsive star polymers gain more and more interest over the last decades due to their unique properties compared to their linear counterparts. The branched structure for instance has influence on the responsive behavior of these polymers. This review offers an overview of stimuli-responsive star polymers generated by different polymerization techniques, e.g. anionic and controlled radical polymerization (CRP). Beside conventional branched homopolymers different other types like block copolymers, miktoarm star copolymers, core crosslinked star polymers (CCS) and comb polymers are also presented. Furthermore their responsive behavior in solution or immobilized on a substrate, and their applications are outlined. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2980–2994  相似文献   

7.
Reversible addition–fragmentation chain transfer (RAFT) polymerization has been shown to be a facile means of synthesizing comb, star, and graft polymers of styrene. The precursors required for these reactions were synthesized readily from RAFT‐prepared poly(vinylbenzyl chloride) and poly(styrene‐co‐vinylbenzyl chloride), which gave intrinsically well‐defined star and comb precursors. Substitution of the chlorine atom in the vinylbenzyl chloride moiety with a dithiobenzoate group proceeded readily, with a minor detriment to the molecular weight distribution. The kinetics of the reaction were consistent with a living polymerization mechanism, except that for highly crowded systems, there were deviations from linearity early in the reaction due to steric hindrance and late in the reaction due to chain entanglement and autoacceleration. A crosslinked polymer‐supported RAFT agent was also prepared, and this was used in the preparation of graft polymers with pendant polystyrene chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2956–2966, 2002  相似文献   

8.
The ABCD 4‐miktoarm star polymers based on polystyrene (PS), poly(ε‐caprolactone) (PCL), poly(methyl acrylate) (PMA), and poly(ethylene oxide) (PEO) were synthesized and characterized successfully. Using the mechanism transformation strategy, PS with three different functional groups (i.e., hydroxyl, alkyne, and trithiocarbonate), PS‐HEPPA‐SC(S)SC12H25, was synthesized by the reaction of the trithiocarbonate‐terminated PS with 2‐hydroxyethyl‐3‐(4‐(prop‐2‐ynyloxy)phenyl) acrylate (HEPPA) in tetrahydrofuran (THF) solution. Subsequently, the ring‐opening polymerization (ROP) of ε‐caprolactone (CL) was carried out in the presence of stannous(II) 2‐ethylhexanoate and PS‐HEPPA‐SC(S)SC12H25, and then the PS‐HEPPA(PCL)‐SC(S)SC12H25 obtained was used in reversible addition‐fragmentation chain transfer (RAFT) polymerization of methyl acrylate (MA) to produce the ABC 3‐miktoarm star polymer, S(PS)(PCL)(PMA) carrying an alkyne group. The ABCD 4‐miktoarm star polymer, S(PS)(PCL)(PMA)(PEO) was successfully prepared by click reaction of the alkyne group on the HEPPA unit with azide‐terminated PEO (PEO‐N3). The target polymer and intermediates were characterized by NMR, FTIR, GPC, and DSC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6641–6653, 2008  相似文献   

9.
Under the validity of the degenerative transfer mechanism, the activation/deactivation process in reversible addition‐fragmentation chain transfer (RAFT) polymerization can be formally quantified by transfer coefficients, depending on the chemical structure of the participating radicals and dormant species. In the present work, the different literature methods to experimentally determine these RAFT transfer coefficients are reviewed and theoretically re‐evaluated. The accuracy of each method is mapped for a broad range of reaction conditions and RAFT transfer reactivities. General guidelines on when which method should be applied are formulated.

  相似文献   


10.
This article provides a critical review of the properties, synthesis, and applications of dithiocarbamates Z′Z″NC(=S)SR as mediators in reversible addition‐fragmentation chain transfer (RAFT) polymerization. These are among the most versatile RAFT agents. Through choice of substituents on nitrogen (Z′, Z″), the polymerization of most monomer types can be controlled to provide living characteristics (i.e., low dispersities, high end‐group fidelity, and access to complex architectures). These include the more activated monomers (MAMs; e.g., styrenes and acrylates) and the less activated monomers (LAMs; e.g., vinyl esters and vinylamides). Dithiocarbamates with balanced activity (e.g., 1H‐pyrazole‐1‐carbodithioates) or switchable RAFT agents [e.g., a N‐methyl‐N‐(4‐pyridinyl)dithiocarbamate] allow control MAMs and LAMs with a single RAFT agent and provide a pathway to low‐dispersity poly(MAM)‐block‐poly(LAM). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 216–227  相似文献   

11.
Summary: Computational chemistry is a valuable complement to experiments in the study of polymerization processes. This article reviews the contribution of computational chemistry to understanding the kinetics and mechanism of reversible addition fragmentation chain transfer (RAFT) polymerization. Current computational techniques are appraised, showing that barriers and enthalpies can now be calculated with kcal accuracy. The utility of computational data is then demonstrated by showing how the calculated barriers and enthalpies enable appropriate kinetic models to be chosen for RAFT. Further insights are provided by a systematic analysis of structure‐reactivity trends. The development of the first computer‐designed RAFT agent illustrates the practical utility of these investigations.

  相似文献   


12.
A novel amine functionalized RAFT agent, 2‐cyanoprop‐2‐yl(4‐N,N‐dimethylaminophenyl) dithiobenzoate has been synthesized and used to control the polymerization of vinyl monomers. This dithiobenzoate RAFT agent, although air sensitive, controlled the polymerization of MMA and St very well in an inert atmosphere and the polymerization results obtained were marginally better than using the most popular 2‐cyanoprop‐2‐yl dithiobenzoate RAFT agent. The living nature of these polymerizations was confirmed by kinetics study and chain extension reactions to yield narrow disperse di‐block copolymers. Most importantly, use of this novel RAFT agent simplified the removal procedure of the color causing end thiocarbonyl group from the RAFT derived polymers and thereby leading to polymers with improved appearance. The removal of end group from the polymer was confirmed by 1H NMR and UV‐vis spectroscopic techniques. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Summary: A novel computational strategy is described for the simulation of star polymerisations, allowing for the computation of full molecular weight distributions (MWDs). Whilst the strategy is applicable to a broad range of techniques for the synthesis of star polymers, the focus of the current study is the simulation of MWDs arising from a reversible addition fragmentation chain transfer (RAFT), R‐group approach star polymerisation. In this synthetic methodology, the arms of the star grow from a central, polyfunctional moiety, which is formed initially as the refragmenting R‐group of a polyfunctional RAFT agent. This synthetic methodology produces polymers with complex MWDs and the current simulation strategy is able to account for the features of such complex MWDs. The strategy involves a kinetic model which describes the reactions of a single arm of a star, the kinetics of which are implemented and simulated using the PREDICI® program package. The MWDs resulting from this simulation of single arms are then processed with an algorithm we describe, to generate a full MWD of stars. The algorithm is applicable to stars with an arbitrary number of arms. The kinetic model and subsequent algorithmic processing techniques are described in detail. A simulation has been parameterised using rate coefficients and densities for a 2,2′‐azoisobutyronitrile (AIBN) initiated, bulk polymerisation of styrene at 60 °C. A number of kinetic parameters have been varied over large ranges. Conversion normalised simulations were performed, leading to information regarding star arm length, polydispersity index (PDI) and the fraction of living arms. These screening processes provided a rigorous test for the kinetic model and also insight into the conditions, which lead to optimal star formation. Finally, full MWDs are simulated for several RAFT agent/initiator ratios as well as for stars with a varying number of arms.

Full MWDs from a star with 1, 2, 4, 6 and 8 arms.  相似文献   


14.
Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl‐thio compounds used as chain‐transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005  相似文献   

15.
In this short review, selected experimental approaches for probing the mechanism and kinetics of RAFT polymerization are highlighted. Methods for studying RAFT polymerization via varying reaction conditions, such as pressure, temperature, and solution properties, are reviewed. A technique for the measurement of the RAFT specific addition and fragmentation reaction rates via combination of pulsed-laser-initiated RAFT polymerization and µs-time-resolved electron spin resonance (ESR) spectroscopy is detailed. Mechanistic investigations using mass spectrometry are exemplified on dithiobenzoic-acid-mediated methyl methacrylate polymerization.  相似文献   

16.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

17.
Herein the first reported preparation of diblock copolymers of the polyethylene‐like polyester poly(ω‐pentadecalactone) (PPDL) via a combination of enzymatic ring‐opening polymerization (eROP) and reversible addition‐fragmentation chain‐transfer (RAFT) polymerization techniques is described. PPDL was synthesized via eROP using Novozyme 435 as a catalyst and a bifunctional initiator/chain transfer agent (CTA) appropriate for the eROP of ω‐pentadecalactone (PDL) and RAFT polymerization of acrylic and styrenic monomers. Chain growth of the PPDL macro‐CTA was performed to prepare acrylic and styrenic diblock copolymers of PPDL, and demonstrates a facile, metal‐free, and “greener” alternative to preparing acrylic diblock copolymers of polyethylene (PE). Diblock copolymer architecture was substantiated via analysis of 1H NMR spectroscopic, UV‐GPC chromatographic, DSC onset crystallization (Tc), and MALDI‐ToF mass spectrometric data. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3326–3335  相似文献   

18.
Summary: Means of improving rates in RAFT‐mediated radical emulsion polymerizations are developed, by setting out strategies to minimize the inhibition and retardation that always are present in these systems. These effects arise from the RAFT‐induced exit of radicals, the desorption of the RAFT‐reinitiating radical from the particles, and the specificity of the reinitiating radical to the RAFT agent. Methods for reducing the inhibition period such as using a more hydrophobic reinitiating radical are predicted to show a significant improvement in the inhibition periods. The time‐dependent behavior of the RAFT adduct to the entering radical and the RAFT‐induced exit (loss) of radicals from particles are studied using a previously described Monte Carlo model of RAFT/emulsion particles. It is shown that an effective way of reducing the rate coefficient for the exit of radicals from the particles is to use a less active RAFT agent. Techniques for improving the rate of polymerization of RAFT/emulsion systems are suggested based upon the coherent understanding contained in these models: the use of an oligomeric adduct to the RAFT agent, a less water‐soluble RAFT re‐initiating group, and a less active RAFT agent.

Populations of the different types of particles (left axis) along with the concentration of the initial RAFT agent, DR (right axis), as a function of time.  相似文献   


19.
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1‐phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the Mn was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 °C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (<1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5232–5245, 2005  相似文献   

20.
Well‐defined copolymer of acrylonitrile (AN) and maleic anhydride (MAn) has been successfully synthesized via reversible addition‐fragmentation chain transfer polymerization. The polymerization kinetics and “living”/controlled features were thoroughly studied and confirmed. The thermal properties and spinnability of the prepared copolymers were investigated via differential scanning calorimetry, thermogravimetric analyzer, and electrospinning subsequently. When PAN‐co‐PMAn was used as precursors, nonwoven with “crosslinked” structures was obtained during electrospinning. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5263–5269  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号