首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of poly(3‐hextylthiophene) (P3HT) in solvent mixtures is studied using solubility and solvatochromic parameters. Correlations between the excitonic coupling of P3HT assemblies and the Kamlet–Taft (α, β, π*) and solvent scales reveal that lower excitonic coupling values are observed in binary mixtures characterized by low β values (0 < β ≤ 0.25) and low polarity (0.1 ≤ ≤ 0.3). Hansen solubility theory is revisited by evaluating the directionality of the solubility distance, Ra. Relationships between the excitonic coupling and the Δδh and Δδp vector components indicate that the polarity of the solvent (Δδp) and the specific solvent‐solvent interactions reflected by the Δδh component direct the formation of well‐ordered P3HT aggregates. The complementary results of the solubility and solvatochromic parameter analyses are in agreement with one another. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 841–850  相似文献   

2.
The aggregation behavior of P3HT is investigated at the interface of orthogonal solvents for P3HT. The changeable characteristics of P3HT aggregate dispersions, for example, extent of aggregation and intrachain order, are studied by varying (1) the interfacial area, (2) the poor solvent used to induce aggregation – dichloromethane (DCM), hexane (HEX), and acetonitrile (AcN) – and (3) the relative composition of the good solvent, chloroform (CF), and poor solvents. The results are compared to those observed using rapid injection of the solvent. Miscibility gap values (Δδ) provide a reasonable justification of the assembly behavior of P3HT in the solvent mixtures in terms of the kinetics of polymer aggregation and the kinetics of solvent mixing at the interface. Atomic force microscopy (AFM) is used to analyze the morphology of films processed from dispersions with disparate characteristics, but having the same solvent composition, for example, 70:30 CF:HEX or 60:40 CF:DCM. Based on the disparity of the kinetics and miscibility gap values, the prevalence of specific structural motifs in the films, for example, spheroids (globules) and fibers, is effectively rationalized in terms of the structural attributes of the aggregates in the liquid phase rather than the evaporation rate (boiling point) differences of the solvents in the mixture. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 999–1011  相似文献   

3.
Solubility data for poly(3‐hexylthiophene) (P3HT) in 29 pure solvents are presented and discussed in detail. Functional solubility parameter (FSP) and convex solubility parameter (CSP) computations are performed and the CSP and FSP results are compared to previously reported Hansen solubility parameters (HSPs) and to the parameters calculated using additive functional group contribution methods. The empirical data reveals experimental solubility parameters with substantial polar (δP) and hydrogen‐bonding (δH) components, which are not intrinsic to the structure of the P3HT polymer. Despite these apparent irregularities, it is shown that the predictor method based on the solubility function, f, does provide a reliable way to quantitatively evaluate the solubility of P3HT in other solvents in terms of a given set of empirical solubility data. The solubility behavior is further investigated using linear solvation energy relationship (LSER) modeling and COSMO‐RS computations of the activity coefficients of P3HT. The LSER model reveals that (1) the cavity term, δT, is the dominant factor governing the solubility behavior of P3HT and (2) the solvent characteristics that dictate the structural order (crystallinity) of P3HT aggregates do not similarly influence the overall solubility behavior of the polymer. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1075–1087  相似文献   

4.
The use of mixed solvents provided an effective way to control the self‐assembly behavior and photophysical properties of a conjugated rod–coil block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO). It was shown that the balance between the π–π stacking of the P3HT and microphase separation of the copolymer could be dynamically controlled and shifted by solvent blending. Depending on the mixed solvent ratio (i.e., chloroform/methanol, anisole/chloroform, or anisole/methanol), the copolymer chains experienced different kinetic pathways, yielding a series of nanostructures such as disordered wormlike pattern, densely packed nanofibrils, and isolated nanofibrils. With the varying solvent selectivity, the P3HT‐b‐PEO chains displayed a hybrid photophysical property depending on the competition between intrachain and interchain excitonic coupling, resulting in the transformation between J‐ and H‐aggregation. Overall, this work offered an effective way to demonstrate the correlation and transformation between π–π stacking of P3HT and microphase separation, and how the conformation of P3HT chains influenced the photophysical properties of the copolymer during solvent blending. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 544–551  相似文献   

5.
Binary solvent mixtures were routinely used to induce the hierarchical assembly of poly(3‐hexylthiophene) (P3HT) in the liquid phase. This technique has garnered a lot of interest as a route to well‐organized films and composites, but, to date, the impact that the attributes of the liquid‐phase aggregates and solvent mixtures have on the organization of the films have only been partially scrutinized. The molecular weight and concentration dependence of P3HT assembly in three binary solvent mixtures containing chloroform and acetonitrile, n‐hexane, or dichloromethane were studied using ultraviolet/visible absorbance spectroscopy and dynamic light scattering techniques. Films drop cast under slow and rapid evaporation conditions were observed using optical and atomic force microscopy. In general, there is no evidence that the characteristics of the liquid phase P3HT aggregates impact the structures of the films, but films cast from these solvent mixtures under rapid evaporation conditions exhibit an array of disparate morphologies and mesoscale patterning. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 624–638  相似文献   

6.
Aggregate dispersions of P3HT in two series of solvent mixtures, chloroform:dichloromethane and toluene:dichloromethane, are used to study the impact of the evaporation velocity and film thickness on the P3HT films processed using two spin‐coating speeds (1000 rpm and 2000 rpm). The structural order and surface morphology were investigated with UV/Vis absorption spectroscopy and atomic force microscopy techniques. There is no evidence that the characteristics of the liquid phase P3HT dispersions impact the structures of the films, which is in agreement with a previous study of drop cast P3HT films that were dried over much longer time periods. An association is observed between the extent of aggregation in the liquid phase and the thickness and surface roughness parameters of the films. However, the structural order does not correlate with the thickness of the films, which was previously reported for polymer films processed from amorphous polymer solutions in pure organic solvents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 330–343  相似文献   

7.
Poly[3‐(5′‐hexylpyridine‐2′‐yl)thiophene] ( P3PT ) (Mn = 13900, H‐T content = 90%) was prepared by the regioselective Grignard metathesis reaction and the subsequent Kumada coupling polymerization. Likewise, poly(3‐hexylthiophene)‐b‐poly[3‐(5′‐hexylpyridine‐2′‐yl)thiophene] ( P3HT‐b‐P3PT ) (Mn = 17,300) was synthesized in the one‐pot and successive monomer addition protocol, in which the segment ratio was calculated to be 56 ( P3HT )/44 ( P3PT ) base on the 1H NMR spectrum. The absorption and emission spectra of homopolymer P3PT(H) , obtained by the protonation of the pyridine nitrogen, in THF/cyclohexane shifted to the longer wavelength as compared with those collected in THF, suggesting the aggregation in poor solvent. The aggregation of P3PT induced by the addition of Sc(OTf)3 could be controlled by the molar ratio of pyridine and scandium complex. The protonated block copolymer P3HT‐b‐P3PT(H) was also subjected to the aggregate formation. The absorption maximum in THF/CH3OH showed a bathochromic shift and the fluorescence emission was almost quenched. From the 1H NMR spectra and DLS measurements, P3HT‐b‐P3PT(H) forms nanometer scale aggregates particularly with the insolubility and stacking of non‐ionic P3HT in alcohol as the driving force. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3383–3389  相似文献   

8.
We have investigated the effect of solvent–polymer interaction on the morphology, crystallinity, and device performance of poly‐(3‐hexylthiophene) (P3HT) and poly{2,7‐(9,9‐didodecyl‐fluorene)‐alt‐5,5‐[4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothia‐diaole]} (PF12TBT) blend system. 3‐Hexylthiophene (3‐HT), which had the similar structural units with both donor and acceptor materials, was chosen as the solvent additive to be added into the main solvent chlorobenzene (CB), to adjust the solvent–polymer interaction. With the 3‐HT percentage increasing from 5 to 30% in CB solution, the solvent–polymer interaction between polymer and solvent molecules decreased slightly according to the calculated solubility parameters (δ) and interaction parameters (χ12). As a result, nanoscale phase‐separated and interconnected morphology with decreased domain size of both donor and acceptor was formed. Meanwhile, the order of P3HT molecule was enhanced which resulted from the extended film drying time and increased molecular planarity after incorporation of 3‐HT. The power conversion efficiency (PCE) had a gradual improvement to 1.08% as the 3‐HT percentage reached 10%, which can be attributed to the enhanced short‐circuit current (Jsc) and fill factor (FF). However, when the 3‐HT percentage exceeded 20%, the decreased Jsc and FF ultimately decreased the PCE. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 288–296  相似文献   

9.
The crystallization‐dominated and microphase separation/crystallization‐coexisted structure of the all‐conjugated diblock copolymers poly(2,5‐dihexyloxy‐p‐phenylene)‐block‐(3‐hexylthiophene) (PPP‐b‐P3HT, denoted as BmTn) with different block compositions was affected by the aggregation state of the diblock copolymers in solvents with different solubilities. For B34T66, B62T38, and B75T25, the coexistence of microphase separation and crystallization was obtained in good solvent with few crystalline aggregates. For B34T66 with a longer P3HT block, densely stacked fiber crystal structures in thin films were found by using marginal solvents with crystalline aggregations in solutions. As for B62T38 and B75T25 with shorter P3HT block and longer PPP block, crystal structures were obtained by the use of solvents with a much larger solubility difference of the two blocks. Thus, microphase‐separated structures are prone to form from solutions with coil conformation and fiber crystals from solutions with larger aggregates, which resulted in the increased crystallinity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1718–1726  相似文献   

10.
It has been demonstrated that the 0‐0 absorption transition of poly(3‐hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid–liquid phase separation process during solution deposition. Pronounced J‐like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid–liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid–liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out‐set of semiconductor:insulator architectures of pre‐defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 304–310  相似文献   

11.
Aggregate formation in poly(3‐hexylthiophene) depends on molecular weight, solvent, and synthetic method. The interplay of these parameters thus largely controls device performance. In order to obtain a quantitative understanding on how these factors control the resulting electronic properties of P3HT, we measured absorption in solution and in thin films as well as the resulting field effect mobility in transistors. By a detailed analysis of the absorption spectra, we deduce the fraction of aggregates formed, the excitonic coupling within the aggregates, and the conjugation length within the aggregates, all as a function of solvent quality for molecular weights from 5 to 19 kDa. From this, we infer in which structure the aggregated chains pack. Although the 5 kDa samples form straight chains, the 11 and 19 kDa chains are kinked or folded, with conjugation lengths that increase as the solvent quality reduces. There is a maximum fraction of aggregated chains (about 55 ± 5%) that can be obtained, even for poor solvent quality. We show that inducing aggregation in solution leads to control of aggregate properties in thin films. As expected, the field‐effect mobility correlates with the propensity to aggregation. Correspondingly, we find that a well‐defined synthetic approach, tailored to give a narrow molecular weight distribution, is needed to obtain high field effect mobilities of up to 0.01 cm2/Vs for low molecular weight samples (=11 kDa), while the influence of synthetic method is negligible for samples of higher molecular weight, if low molecular weight fractions are removed by extraction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
In this study, cyclic poly(3‐hexylthiophene‐2,5‐diyl) (c‐P3HT) with a controlled Mn was synthesized by the intramolecular cyclization of α‐bromo‐ω‐ethynyl‐functionalized P3HT via the Sonogashira coupling reaction. The effect of the cyclic structure, which does not have terminal groups of polymers, on the photoelectric conversion characteristics was investigated in comparison to linear P3HT (l‐P3HT). c‐P3HT was successfully synthesized with Mn ≈ 17,000, dispersity ≈ 1.2, and regioregularity ≈ 99%. The hole mobility was determined to be 5.1 × 10?4 cm2 V?1 s?1 by time‐of‐flight (TOF) experiment. This was comparable to that of l‐P3HT of 5.6 × 10?4 cm2 V?1 s?1. Organic solar cell systems were fabricated with each polymer by blending them with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The l‐P3HT:PC71BM system showed a dispersive TOF photocurrent profile for electron transport, whereas a nondispersive profile was observed for c‐P3HT:PC71BM. In addition, an amount of collected electrons in c‐P3HT:PC71BM was greater than that in l‐P3HT:PC71BM for TOF experiments. The photoelectric conversion characteristics were improved by using c‐P3HT rather than l‐P3HT (power conversion efficiency [PCE] = 4.05% vs 3.23%), reflecting the nondispersive transport and the improvement of electron collection. PCEs will be much improved by applying this cyclic concept to highly‐efficient OSC polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 266–271  相似文献   

13.
Arborescent copolymers with a core‐shell‐corona (CSC) architecture, incorporating a polystyrene (PS) core, an inner shell of poly(2‐vinylpyridine), P2VP, and a corona of PS chains, were obtained by anionic polymerization and grafting. Living PS‐b‐P2VP‐Li block copolymers serving as side chains were obtained by capping polystyryllithium with 1,1‐diphenylethylene before adding 2‐vinylpyridine. A linear or arborescent (generation G0 – G3) PS substrate, randomly functionalized with acetyl or chloromethyl coupling sites, was then added to the PS‐b‐P2VP‐Li solution for the grafting reaction. The grafting yield and the coupling efficiency observed in the synthesis of the arborescent PS‐g‐(P2VP‐b‐PS) copolymers were much lower than for analogous coupling reactions previously used to synthesize arborescent PS homopolymers and PS‐g‐P2VP copolymers from the same types of coupling sites. It was determined from static and dynamic light scattering analysis that PS‐b‐P2VP formed aggregates in THF, the solvent used for the synthesis. This presumably hindered coupling of the macroanions with the substrate, and explains the low grafting yield and coupling efficiency observed in these reactions. Purification of the crude products was also problematic due to the amphipolar character of the CSC copolymers and the block copolymer contaminant. A new fractionation method by cloud‐point centrifugation was developed to purify copolymers of generations G1 and above. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1075–1085  相似文献   

14.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Poly(3‐hexylthiophene)/single‐walled carbon nanotube (P3HT/SWNT) materials are synthesized using an insitu Grignard metathesis approach. The structural properties and photophysics of the materials are studied using a multitude of techniques, including 1H NMR, FTIR, UV–vis absorption, Raman, photoluminescence (PL), and transient absorption spectroscopies. P3HT/SWNT composites with high P3HT regioregularity (rr > 96%) are observed. Raman spectroscopic data on the solid samples reveals an increase in the dispersion rate parameter with increasing SWNT concentration, thereby indicating close overlap and strong interactions between P3HT and the carbon nanotubes. Changes in the solution‐phase PL quantum yields and excited‐state lifetimes relative to pure P3HT support these conclusions, and indicate that strong interactions persist even after the composites are dispersed in organic solvents. The high regioregularity and enhanced P3HT–SWNT interactions are promising attributes for improving the morphology and efficiency of functional P3HT/SWNT materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 310–320  相似文献   

16.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is the most popular anode buffer coated on indium tin oxide. It is thought to improve the inorganic–organic contact, but little is known about its role in organic–organic contact. This study addresses the latter issue by examining how the PEDOT:PSS layer affects the crystallization process of the neighboring layer composed of p‐type organic semiconductors in an organic photovoltaic device. Low landing voltage scanning electron microscopic analysis of crystals and aggregates of two donor compounds, tetrabenzoporphyrin (BP) and poly(3‐hexylthiophene) (P3HT), showed that PEDOT:PSS effectively nucleates the crystallization or aggregation of the donor material on its surface to form a uniformly thick film of polycrystalline BP or aggregated P3HT molecules. By contrast, a graphitic surface cannot induce structural order of the donor molecules on it. This result implies that pinning of the donor molecules to the acidic PEDOT:PSS surface promotes the heterogeneous nucleation at the organic–organic interface. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 833–841  相似文献   

17.
The formation and morphological characteristics of crew‐cut aggregates from blends of polystyrene‐b‐poly(acrylic acid) diblock copolymer and polystyrene homopolymer in solution were studied by static light scattering, transmission electron microscopy and size exclusion chromatography. The crew‐cut aggregates, consisting of a polystyrene core and a poly(acrylic acid) corona, were prepared by direct dissolution of the polymer blends in a selective solvent mixture consisting of 93 wt % dimethylformamide and 7 wt % water. It is found that the aggregation behavior depends strongly on the relative volume fractions of the block copolymer and homopolymer in the blends. This is a result of the difference in solubility between the copolymer and the homopolymer in solution which, in turn, influences their miscibility and mutual solubility and consequently the morphology of the formed crew‐cut aggregates. Specifically, when the homopolymer fraction is low, it is mainly dissolved in the cores of the crew‐cut aggregates formed by the block copolymer. When the homopolymer fraction exceeds its solubility limit in the copolymer micelles, aggregates of another type are formed which contain a major fraction of the homopolymer. These aggregates are usually much larger than the primary micelles and have an internal structure due to the formation of reverse micelles from the dissolved block copolymer chains. The importance of thermodynamic vs. kinetic aspects during the formation of the crew‐cut aggregates is also discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1469–1484, 1999  相似文献   

18.
Aqueous solution properties of amphiphilic P(AA‐cotBA)‐b‐PPO‐b‐ P(AA‐cotBA) copolymers having various tBA contents are presented in this article. These copolymers show pH‐sensitive behavior depending on tBA/AA ratio. Hydrophobic interactions between tBA units leading to pH‐dependent macroscopic aggregates were evidenced by turbidimetry. The aggregation behavior of the PPO middle block was concealed in presence of tBA units. The formation of water‐soluble aggregated objects was characterized by Asymmetrical Flow Field Flow Fractionation (AsF4). By increasing tBA/AA ratio, we observed an increase of aggregates size as well as a reduction of the critical concentration aggregation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1944–1949  相似文献   

19.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
A series of all‐conjugated diblock and triblock copolymers comprised of poly(naphthalene diimide) (PNDI)‐based n‐type and the poly(3‐hexylthiophene) (P3HT) segments could be synthesized via the Kumada catalyst‐transfer polycondensation process. The crystalline structures and chain orientation of the block copolymer thin films were systematically studied by grazing incident wide‐angle X‐ray scattering (GIWAXS). The GIWAXS results indicated that both the P3HT and PNDI segments in the block copolymers form exclusive crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domain aligns with a face‐on rich orientation. In contrast, the blend films of the P3HT and PNDI homopolymers also show two distinguished crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domains align in different ways depending on the chemical structure of n‐type polymers, that is, PNDI1Th is isotropically dispersed, while PNDI2Th aligns with a face‐on rich orientation. In addition, the effect of thermal annealing on the crystalline behavior of the block copolymers is reported. The GIWAXS results indicated that thermal annealing increases the crystallinity of both segments without affecting their chain orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1139–1148  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号