首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction occurring between a layered material (boric acid) and an atomic force microscope tip is discussed. It is shown that images containing the periodicity of a boric acid crystal, and the low friction occurring between the tip and the crystal surface, are caused by an effective tip composed of boric acid molecules. The friction at the sliding system decreases with an increase of the scanning velocity, suggesting that the dependence of friction on the velocity can be caused by a change of the energy dissipation regime from the nonlinear dynamics of a sliding system to phonon excitation.  相似文献   

2.
The atomic structure of surfaces of alkali halide crystals has been revealed by means of high-resolution dynamic force microscopy. True atomic resolution is demonstrated both on steps surrounding islands or pits, and on a chemically mixed crystal. We have directly observed the enhanced interaction at low-coordinated sites by force microscopy. The growth of NaCl films on metal surfaces and radiation damage in a KBr surface is discussed based on force microscopy results. The damping of the tip oscillation in dynamic force microscopy might provide insight into dissipation processes on the atomic scale. Finally, we present atomically resolved images of wear debris found after scratching a KBr surface. PACS 68.37.-d; 68.37.Ps; 75.55.Fv  相似文献   

3.
Deceleration and velocity distribution narrowing of an atomic beam irradiated by a counter-running resonant light wave is discussed. Velocity distribution evolution under the action of light pressure force and diffusion is found. The results of a numerical solution of the kinetic equation for the atomic velocity distribution function are presented. These results show the efficiency of using the light pressure to decelerate atomic beams and narrow their velocity distribution.  相似文献   

4.
We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 × 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.  相似文献   

5.
An adsorbed water film always exists between the sample and the probing tip of an atomic force microscope operating at atmospheric conditions. A new expression for the capillary force that acts between the tip and the thin liquid film has been obtained taking into account the size dependence of the surface tension of the liquid described by an exact solution of the Gibbs-Tolman-Koenig-Buff equation. The calculation agrees fairly well with the experimental results.  相似文献   

6.
The elementary processes of crystal growth in the case of a low kink density on step edges have been studied by in situ atomic force microscopy. High-resolution images of the first turn of the polygonal dislocation spiral on the (101) face of monoclinic lysozyme crystals, which allow one to discern separate crystal cells, have been obtained. It has been shown that the dependence of the spiral segment velocity on its length is inconsistent with the Gibbs-Thomson law and is represented by several rectilinear sections. The results were explained by taking into account the features of the growth of crystals with a low kink density at low supersaturation.  相似文献   

7.
The atomic force microscope (AFM) was used for measuring force-distance curves on horse spleen ferritin crystals in liquid environment. In the region of the approach curve which corresponds to tip-surface contact, discrete jumps were recorded, as predicted by molecular dynamics simulations in the case of low tip-sample interaction. The observed jumps can be related to the removal of individual molecules from the surface by the AFM tip. A simple steric model, which takes into account tip and ferritin molecule size, can explain the displacements observed with excellent agreement. The elemental force jump resulting from the approach curves is a direct measure of the force required to remove a single molecule from the crystal face. We discuss the conditions under which the cantilever potential energy difference along the elemental force step provides the energy of extraction of a single molecule. The estimate of the intermolecular binding energy turns out to be in good agreement with the value calculated independently from the surface free energy of ferritin crystals. Received 10 February 2000 and Received in final form 4 May 2000  相似文献   

8.
Interaction potential and hopping dynamics governing sliding friction   总被引:1,自引:0,他引:1  
The friction force on a nanometer-sized tip sliding on a surface is related to the thermally activated hopping of the contact atoms on an effective atomic interaction potential. A general analytical expression relates the height of this potential and the hopping attempt frequency to measurements of the velocity dependence of the friction force performed with an atomic force microscope. While the height of the potential is roughly proportional to the normal load, the attempt frequency falls in the range of mechanical eigenfrequencies of the probing tip in contact with the surface.  相似文献   

9.
We use computer modeling to investigate the mechanism of atomic-scale corrugation in frequency-modulation atomic force microscopy imaging of inorganic surfaces in solution. Molecular dynamics simulations demonstrate that the forces acting on a microscope tip result from the direct interaction between a tip and a surface, and forces entirely due to the water structure around both tip and surface. The observed force depends on a tip structure and is a balance between largely repulsive potential energy changes as the tip approaches and the entropic gain when water is sterically prevented from occupying sites near the tip and surface.  相似文献   

10.
The velocity and humidity dependence of nanoscopic sliding friction has been studied on CrN and diamondlike carbon surfaces with an atomic force microscope. The surface wettability is found to be decisive. Partially hydrophilic surfaces show a logarithmic decrease of friction with increasing velocity, the slope of which varies drastically with humidity, whereas on partially hydrophobic surfaces we confirm the formerly reported logarithmic increase. A model for the thermally activated nucleation of water bridges between tip and sample asperities fully reproduces the experimental data.  相似文献   

11.
We observe a stringlike domain penetration from a ferroelectric surface deep into the crystal bulk induced by a high voltage atomic force microscope tip. The domains, which resemble channels of an electrical breakdown, nucleate under an electric field of around 10(7) V/cm at the ferroelectric surface, and grow throughout the crystal bulk where the external electric field is practically zero. A theory explaining the shape of the formed domains is presented. It shows that the driving force for the domain breakdown is the decrease of the total free energy of the system with increasing domain length.  相似文献   

12.
The scattering of an atomic beam from a randomly stepped surface has been calculated using the hard corrugated wall model. Under the basic assumption that scattering from the step edges may be neglected the scattering equation can be solved without any further approximation. The solution displays the usual diffraction peaks each of them is broaden by a term characterizing the step configuration. If the step distribution is ergodic and stationnary in space this term is the characteristic function of the difference of level between two point of the surface considered as a random variable. Statistical models for the step repartition at the surface are proposed and the scattering intensity is derived in a closed form. The main result is that the broadening of the peaks varies from no broadening to a maximum according as the interferences from waves reemitted by the various terraces are constructive or destructive. A comparison is made with previous experimental data from which an estimation of the average step separation can be drawn. The sensitivity of the atomic beam scattering to steps is found to be more than one step every one hundred crystal atoms.  相似文献   

13.
The transverse component of the friction forces acting on the tip of an atomic force microscope scanning on the surface of an organic crystal was monitored as a function of the scan direction. The relation between friction and the crystallographic system is disclosed, revealing that the symmetry of the friction phenomenon is dictated by the direction of the prominent corrugations of the crystal surface. It is also illustrated that molecular-resolution images can be collected through the monitoring of the motion of the tip in a transverse direction with respect to the scan direction.  相似文献   

14.
The magnitude and direction of forces acting between individual atoms as a function of their relative position can be described by atomic-scale force-vector fields. We present a noncontact atomic force microscopy based determination of the force fields between an atomically sharp tip and the (001) surface of a KBr crystal in conjunction with atomistic simulations. The direct overlap of experiment and simulation allows identification of the frontmost tip atom and of the surface sublattices. Superposition of vertical and lateral forces reveals the spatial orientation of the interatomic force vectors.  相似文献   

15.
The effect of adsorption of submonolayer gold coatings on the Si(111) surface morphology in the temperature range 850–1260°C has been investigated by means in situ ultrahigh-vacuum reflection electron microscopy and ex situ atomic force microscopy. Reversible transformations of the silicon surface: from regular monoatomic steps to step bunches, depending on the gold coverage and direction of the electric current resistively heating the crystal, have been revealed. Stability of the regular distribution of monoatomic steps upon heating of the crystal by an alternating current is shown. The effect of an electric field applied to the sample on the diffusion of silicon and gold adatoms has been analyzed taking into account the effective adatom charge.  相似文献   

16.
Non-contact atomic force microscopy (NCAFM) minimizes the physical interaction between the AFM tip and the surface of interest. Several recent studies have reported observation of single atom defects using this technique. The repulsive force is presumably the primary interatomic force (cf. our paper on pseudo-non-contact mode in this issue) responsible for the reported atomic resolution in these studies. The combination of these factors, minimal tip–sample deformation and repulsive force interaction, are responsible for the observation of the single atom defects. In the present study, we show that similar resolution can be achieved utilizing the same two factors but which employs scanning in a surfactant. The method decreases the tip–sample interaction by eliminating the attractive forces between the tip and sample. The surfactant solution induces an electrical double-layer (EDL) on the surface of the tip and sample. This EDL creates additional repulsion that is distributed over a large area, and hence does not contribute noticeably to the image contrast during scanning. However, it does compensate for the high pressures normally experienced by the tip in the absence of surfactant. In addition, the presence of the EDL enhances tip stability during the image scan. This method has been tested on surfaces of such minerals as mica, chlorite, and anhydrite.  相似文献   

17.
18.
With a triple-apex tip, we investigate theoretically the vertical manipulation of single Pt adatom on the Pt(111) surface. The adatom adsorbed on the f cc site of the flat Pt(111) surface can be transferred vertically to the tip by adjusting the tip height properly. Moreover, based on the strong vertical trapping ability and the relatively weak lateral trapping ability of the tip, we propose a simple method to realize a reversible vertical manipulation of the Pt adatom from the highly coordinated sites, the kink and the step sites, of the stepped Pt(111) surface. All the vertical manipulations are completed using only the atomic force between the tip and the adatom, without the electric field.  相似文献   

19.
The electric field of dipoles localized at the atomic steps of metal surfaces due to the Smoluchowski effect were measured from the electrostatic force exerted on the biased tip of a scanning tunneling microscope. By varying the tip-sample bias the contribution of the step dipole was separated from changes in the force due to van der Waals and polarization forces. Combined with electrostatic calculations, the method was used to determine the local dipole moment in steps of different heights on Au(111) and on the twofold surface of an Al-Ni-Co decagonal quasicrystal.  相似文献   

20.
By combining dynamic force microscopy experiments and first-principles calculations, we have studied the adhesion associated with a single atomic contact between a nanoasperity--the tip apex--and a semiconductor surface--the Ge(111)-c(2 x 8). The nanoasperity's termination has been atomically characterized by extensive comparisons of the measured short-range force at specific sites with the chemical forces calculated using many atomic models that vary in structure, composition, and relative orientation with respect to the surface. This thorough characterization has allowed us to explain the dissipation signal observed in atomic-resolution images and force spectroscopic measurements, as well as to identify a dissipation channel and the associated atomic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号