首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The processes of boundary friction between two atomically smooth solid surfaces with an ultrathin layer of lubricant between them are studied in the context of the model of the first-order phase transitions, taking into account the spatial inhomogeneity. The stick-slip regime of motion, which is often observed experimentally for such systems, is considered. Such a regime is represented as the periodic first-order phase transitions between the structural states of the lubricant. It is shown that during motion, the lubricant tends to assume a homogeneous structure over the sliding plane, which results in the periodicity of time dependences of the basic parameters in the stick-slip regime. The dependence of the order parameter on the shear rate is analyzed and it is shown that this dependence has the same shape for all the regions on the contact plane.  相似文献   

3.
We discuss the stick-slip motion of an elastic block sliding along a rigid substrate. We argue that for a given external shear stress this system shows a discontinuous nonequilibrium transition from a uniform stick state to uniform sliding at some critical stress which is nothing but the Griffith threshold for crack propagation. An inhomogeneous mode of sliding occurs when the driving velocity is prescribed instead of the external stress. A transition to homogeneous sliding occurs at a critical velocity, which is related to the critical stress. We solve the elastic problem for a steady-state motion of a periodic stick-slip pattern and derive equations of motion for the tip and resticking end of the slip pulses. In the slip regions we use the linear friction law and do not assume any intrinsic instabilities even at small sliding velocities. We find that, as in many other pattern forming system, the steady-state analysis itself does not select uniquely all the internal parameters of the pattern, especially the primary wavelength. Using some plausible analogy to first-order phase transitions we discuss a soft selection mechanism. This allows to estimate internal parameters such as crack velocities, primary wavelength and relative fraction of the slip phase as functions of the driving velocity. The relevance of our results to recent experiments is discussed.  相似文献   

4.
界面摩擦过程非连续能量耗散机理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
龚中良  黄平 《物理学报》2008,57(4):2358-2362
结合无磨损界面摩擦微观能量耗散机理的复合振子模型,运用量子理论建立了微观能量耗散的量子力学模型.分析表明:在滑动过程中,当界面原子从一种平衡态跳跃至另一种平衡态时,摩擦功以离散形式耗散为界面原子热振子,且界面吸收能量的能力是离散的;高能态界面较低能态界面吸收能量的能力强,表现为易于吸收界面势能.界面原子吸收和释放能量的离散性在宏观上表现为摩擦功耗散的非连续性,为从微观角度解释无磨损界面摩擦状态周期性变化提供了理论基础. 关键词: 摩擦 非连续能量耗散 复合振子模型  相似文献   

5.
ABSTRACT

Interaction forces between solid surfaces are often mitigated by adsorbed molecules that control normal and friction forces at nanoscale separations. Molecular dynamics simulations were conducted of opposing semi-ordered monolayers of united-atom chains on sliding surfaces to relate friction and normal forces to imposed sliding velocity and inter-surface separation. Practical examples include adsorbed friction-modifier molecules in automatic transmission fluids. Friction scenarios in the simulations had zero, one, or two fluid layers trapped between adsorbed monolayers. Sliding friction forces increased with sliding velocity at each stable separation. Lower normal forces were obtained than in most previous nanotribology molecular simulations and were relatively independent of sliding speed. Distinguishing average frictional force from its fluctuations showed the importance of system size. Uniform velocities were obtained in the sliding direction across each adsorbed film, with a gradient across the gap containing trapped fluid. The calculated friction stress was consistent with measurements reported using a surface forces apparatus, indicating that drag between an adsorbed layer and trapped fluid can account sufficiently for sliding friction in friction modifier systems. An example is shown in which changes in molecular organisation parallel to the surface led to a large change in normal force but no change in friction force.  相似文献   

6.
摩擦微观能量耗散机理的复合振子模型研究   总被引:6,自引:0,他引:6       下载免费PDF全文
许中明  黄平 《物理学报》2006,55(5):2427-2432
提出无磨损界面摩擦微观能量耗散机理的复合振子模型,指出滑动摩擦过程同时存在整体做低频弹性振动的宏观振子和界面原子受激励产生热振动的微观振子,并在此基础上分析了宏观振子和微观振子对摩擦能量耗散的不同影响. 通过对界面原子的动力学分析,指出摩擦过程界面激励力的频率是能量转换的关键:在平衡力作用阶段,界面作用力的频率趋于零,因而可以直接作用到每个原子,力的作用效果是整体和均匀的;在失稳跳跃阶段,由于界面激励力的频率极高,造成摩擦界面原子获得的能量分布很不均匀,从而产生不可逆的能量耗散过程. 与目前通用的独立振子模型比较,复合振子模型能够更准确描述摩擦能量耗散过程,可为摩擦控制提供理论指导. 关键词: 摩擦 能量耗散机理 复合振子模型 独立振子模型  相似文献   

7.
This paper is a second in a series devoted to the study of a two-oscillator system in linear relative motion (the first one published as a letter in [J.S. H?ye, I. Brevik, Europhys. Lett. 91, 60003 (2010)]). The main idea behind considering this kind of system is to use it as a simple model for Casimir friction. In the present paper we extend our previous theory so as to obtain the change in the oscillator energy to second order in the perturbation, even though we employ first order perturbation theory only. The results agree with, and confirm, our earlier results obtained via different routes. The friction force is finite at finite temperatures, whereas in the case of two oscillators moving with constant relative velocity the force becomes zero at zero temperature, due to slowly varying coupling.  相似文献   

8.
Dissipation in solid friction is studied as a function of the elastic properties of the two sliding surfaces. The two surfaces have been constructed by embedding macroscopic asperities in an elastic layer. It is shown that when the surfaces are rigid the energy dissipation is smaller than in the elastic case. The scaling of the friction force as a function of the asperity number is also studied. Received 9 November 1998  相似文献   

9.
王世伟  朱朋哲  李瑞 《物理学报》2018,67(7):76101-076101
本文采用分子动力学模拟研究了羟基对碳纳米管摩擦和能量耗散方式的影响.研究结果表明:由于界面间氢键的形成,碳纳米管所受的平均摩擦力明显增大;随着羟基比例的改变,界面间氢键的数量与摩擦力的变化趋势一致;碳纳米管的手性角对摩擦力有一定的影响,扶手椅型碳纳米管所受的摩擦力比其他类型的碳纳米管的大;直径对摩擦力的影响较大,直径越大界面间的摩擦力越大,其原因是大直径的碳纳米管底部变平导致界面接触面积增大;界面接枝羟基后,体系的声子态密度中出现羟基的振动峰;随羟基比例的增加,羟基的振动在能量耗散中起到更为重要的作用,当碳纳米管和硅基底的羟基比例为10%/20%时,体系能量耗散的主要途径由碳纳米管和硅基底的振动转变为羟基的振动.  相似文献   

10.
基于非连续能量耗散的滑动摩擦系数计算模型   总被引:1,自引:0,他引:1       下载免费PDF全文
龚中良  黄平 《物理学报》2011,60(2):24601-024601
分析了界面摩擦状态下能量非连续耗散过程,建立了简化条件下晶体材料界面摩擦滑动摩擦系数计算模型.结果表明:在弹性接触状态下,滑动摩擦系数与载荷及实际接触面积无关,当实际接触面积接近名义接触面积时,滑动摩擦系数随载荷增加而减小.在缓慢滑动时,滑动摩擦系数随滑动速度的增高而缓慢增大,相对滑动速度愈高,滑动摩擦系数增大趋势愈显著.滑动摩擦系数随晶格常数的增加而降低,而当晶格常数较大时,其变化对滑动摩擦系数影响较小.同时,滑动摩擦系数随原子的可能温升增加而增大.研究结论对工程应用及相关的理论研究具有一定的参考意义. 关键词: 滑动摩擦系数 非连续能量耗散 界面摩擦  相似文献   

11.
Energy dissipation of a friction damper   总被引:1,自引:0,他引:1  
In this paper the energy dissipated through friction is analysed for a type of friction dampers used to reduce squeal noise from railway wheels. A one degree-of-freedom system is analytically studied. First the existence and stability of a periodic solution are demonstrated and then the energy dissipated per cycle is determined as a function of the system parameters. In this way the influence of the mass, natural frequency and internal damping of the friction damper on the energy dissipation is established. It is shown that increasing the mass and reducing the natural frequency and internal damping of the friction damper maximizes the dissipated energy.  相似文献   

12.
丁凌云  龚中良  黄平 《物理学报》2009,58(12):8522-8528
以界面摩擦为研究对象,分析了黏滑过程中的能量积累和耗散问题.基于晶格热动力学理论,通过分析界面原子在周期性势场中跳跃前后的势能差,推导了界面原子温升公式.理论表明,界面温升与摩擦系统的接触状态和材料特性有关,界面交互势能是其中影响较大的因素之一.在滑动阶段初期,由于界面原子处于非热平衡状态,晶格的热振动将通过激发出新声子而耗散能量,从而使得非热平衡向平衡状态转变.通过引入量子力学和热力学理论,分析了界面摩擦能量的耗散规律.结果表明,当声子振动频率较大时,黏着阶段存储于界面振子上的弹性势能在滑动阶段就很快完全耗散,耗散时间远小于滑动阶段的时间. 关键词: 界面摩擦 黏滑 声子 温升  相似文献   

13.
The dissipation mechanism of nanoscale kinetic friction between an atomic force microscopy tip and a surface of amorphous glassy polystyrene has been studied as a function of two parameters: the scanning velocity and the temperature. Superposition of the friction results using the method of reduced variables revealed the dissipative behavior as an activated relaxation process with a potential barrier height of 7.0 kcal/mol, corresponding to the hindered rotation of phenyl groups around the C-C bond with the backbone. The velocity relationship with friction F(v) was found to satisfy simple fluctuation surface potential models with F proportional to const-ln(v) and F proportional to const-ln(v)2/3.  相似文献   

14.
O.M. Braun  Erio Tosatti 《哲学杂志》2013,93(24):3253-3275
The kinetics and dynamics of frictional stick-slip motion of a slider of size extending from mesoscopic upward is analyzed within the framework of a multi-contact, earthquake-like model. The microscopic contacts are characterized by a distribution of static thresholds for individual breaking. The condition for an overall elastic instability leading to stick-slip sliding are derived and details of the slip motion are studied theoretically. The crucial model parameters emerging from this analysis include the delay time for each micro-contact to reform after breaking, the strength of elastic interaction between the contacts, the elasticity of contacts and of the slider, and the distribution of static thresholds for their breaking. The dynamics is also studied with the help of a scaling procedure. As a prototype application, we adopt parameters appropriate to describe recent surface force apparatus (SFA) boundary lubrication experiments. Despite suggestions of extremely large lubricant viscosities, the experimental data are shown to be fully compatible with ordinary, bulk-like viscosity values once the multi-contact aspects are taken into account.  相似文献   

15.
This study investigates lubrication and related frictional phenomena on the nanoscale using numerical simulations. Two models of lubrication, a two-layer and a three-layer, are considered, and for the three-layer model, a lubricant layer is introduced between the two solids. The kinetic frictional force shows resonance behaviour caused by multi-phonon excitations at the interface. It is found that these frictional effects cause a peculiar stick-slip motion of the driven plate and lubricants.  相似文献   

16.
The relationships between the energy of small-scale turbulence and its dissipation rate are studied based on the data of long-term high-frequency measurements of temperature and wind velocity fluctuations in urban area. It is shown that the energy of wind velocity turbulent fluctuations is linearly related to the dissipation rate ɛ. The proportionality coefficient between turbulent kinetic energy (TKE) and ɛ is dimensional and does not depend on the stratification of the atmosphere, the Richardson number, or the Monin-Obukhov scale. Measurements in different seasons show that this coefficient can be related to the mean velocity of adiabatic motions (sound speed or air temperature), which enables one to select a more universal constant, γ. A linear relationship between the temperature fluctuations variance (the characteristic of the inner energy of turbulence) and their dissipation rate is also shown. The revealed proportionality is confirmed by measurements in urban and forest conditions, as well as in the surface layer over a flat desert terrain.  相似文献   

17.
We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially “scale-free”, displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.  相似文献   

18.
Combining total energy and molecular dynamics calculations, we explore the suitability of nanotube-based hooks for bonding. Our results indicate that a large force of 3.0 nN is required to disengage two hooks, which are formed by the insertion of pentagon-heptagon pairs in a (7,0) carbon nanotube. Nanohooks based on various nanotubes are resilient and keep their structural integrity during the opening process. Arrays of hooks, which are permanently anchored in solid surfaces, are a nanoscale counterpart of velcro fasteners, forming tough bonds with a capability of self-repair.  相似文献   

19.
We calculate the non-adiabatic excitations of pair states in a BCS formalism for a fissioning236U nucleus. The single-particle spectrum is calculated for a folded-Yukawa potential along a deformation path that is determined classically for one-body dissipation. The resulting microscopic energy dissipation is compared to that due to one- and two-body dissipation.  相似文献   

20.
《Physica A》1991,173(3):583-594
From classical electrodynamics the energy dissipation per unit volume in a dispersive nonmagnetic medium is known to be equal to ωϵ″(ω) 〈E2〉, where ϵ″ denotes the imaginary part of the permittivity. The present work calculates the energy dissipation per unit surface area when two semi-infinite homogenous slabs are separated by a gap a. Only the gap-induced part of the dissipation is taken into account, so that the effect may be called a Casimir dissipative effect. Subtracting off the formal T = 0 expression the net dissipation is found to be negative. This reflects the fact that the dissipation in the presence of a gap is less than it would be in the case of a single homogeneous medium (i.e., a = ∞).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号