首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2020,384(28):126732
In this work, we investigate the electronic transport properties of M/SiC Schottky junctions (M=Ag, Au and Pd). The results show that the band structures of hydrogenated zigzag SiC nanoribbons (ZSiCNRs) and hydrogenated armchair SiC nanoribbons (ASiCNRs) are almost unaffected by their width changes. When the hydrogenated 7-ASiCNR is directly connected to the Ag, Au and Pd electrode, the transmission spectra of three metal-semiconductor junctions show that the Fermi level of metal is pinned to a fixed position in the semiconductor band gap of hydrogenated 7-ASiCNR. The nearly same rectifying current-voltage characteristics are found in three metal-semiconductor junctions. The average rectification ratios of three M/SiC Schottky junctions are all in the neighborhood of 106. In other word, the M/SiC Schottky junction has remarkable application prospect as the candidate for Schottky Diode.  相似文献   

2.
有机-无机杂化钙钛矿材料有高吸收系数、低廉的制作成本以及较为简单的制备工艺,在近年来表现出良好的发展前景.本文采用wx-AMPS模拟软件对平面结构钙钛矿太阳电池和肖特基钙钛矿太阳电池进行建模仿真对比,从理论上分析无载流子传输层的肖特基钙钛矿太阳电池的优势.结果显示,器件两侧电极功函数和吸收层的能带分布是提高太阳电池效率的关键.在对电极使用Au(功函数为5.1 eV)的前提下,透明导电电极功函数为3.8 eV,可以得到肖特基钙钛矿太阳电池转换效率为17.93%.对器件模型吸收层进行优化,通过寻找合适的掺杂浓度,抑制缺陷密度,确定合适的厚度,可以获得理想的转换效率(20.01%),是平面异质结结构(理论转换效率31%)的63.84%.肖特基钙钛矿太阳电池在简单的器件结构下可以获得优异的光电性能,具有较好的应用潜力.  相似文献   

3.
The surface of hydrogen-sensitive GaAs Schottky diodes is modified by nonpolishing etching and by producing quantum wells and quantum dots in the space-charge region of the semiconductor. The sensitivity to hydrogen is found to increase by a factor of 8–37 after the etching and by two or three orders of magnitude after the introduction of quantum wells and dots. It is shown that the increased sensitivity is associated with the lowering of the barrier at the Pd/GaAs interface, the retardation of hydrogen diffusion into GaAs due to the presence of strained quantum-size layers, and an increase in the recombination current. The presence of the recombination component is supported by luminescence from the quantum wells and quantum dots, as well as from the GaAs substrate. The etch composition is shown to be a decisive factor in raising the sensitivity.  相似文献   

4.
A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4mCi/cm^2, an open circuit voltage of 0.49 V and a short circuit current density of 29.44nA/cm^2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device.  相似文献   

5.
We show that carbon nanotube transistors operate as unconventional "Schottky barrier transistors," in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance. Transistor characteristics are calculated for both idealized and realistic geometries, and scaling behavior is demonstrated. Our results explain a variety of experimental observations, including the quite different effects of doping and adsorbed gases. The electrode geometry is shown to be crucial for good device performance.  相似文献   

6.
Summary A new hydrogen sensor is here presented, based on the use of horizontally polarized surface transverse waves (STW). The use of these waves for application to chemical sensors seems attractive because of the possibility of controlling their penetration depth into the substrate and thus increasing the sensitivity of the device. Preliminary experiments, performed on a ST-cut quartz substrate, have shown how the response of the device strongly increases with the STW energy trapping in the sensitive Pd film.  相似文献   

7.
Bipolar resistive switching is studied in BiFe0.95Zn0.05O3 films prepared by pulsed laser deposition on (001) SrTiO3 substrate, with LaNiO3 as the bottom electrode, and Pt as the top electrode. Multiple steps of resistance change are ob- served in the resistive switching process with a slow voltage sweep, indicating the formation/rupture of multiple conductive filaments. A resistive ratio of the high resistance state (HRS) to the low resistance state (LRS) of over three orders of mag- nitude is observed. Furthermore, the conduction mechanism is confirmed to be space-charge-limited conduction with the Schottky emission at the interface with the top Pt electrodes in the HRS, and Ohmic in the LRS. Impedance spectroscopy demonstrates a conductive ferroelectric/interfacial dielectric 2-layer structure, and the formation/rupture of the conductive filaments mainly occurs at the interfacial dielectric layer close to the top Pt electrodes.  相似文献   

8.
The electronic properties of InSe/M (M  Pd, Au) interfaces have been studied by X-ray photoemission measurements. For the InSe/Pd interface, it has been found that Pd atoms diffuse into the InSe lattice at early stages of Pd coverage, acting as acceptor centers. As the Pd coverage increases, a Pd-InSe reaction determines the electronic behaviour of the interface. However, for Pd coverages higher than 1 ML, the barrier formation tends to be controlled by an emerging bulklike Pd overlayer. Despite the atomic structure of this system is far from that expected for an ideal Schottky one, the final electronic barrier value is close to that expected for an abrupt InSe/Pd Schottky interface. On the contrary, the InSe/Au system appeared to behave as a quasi-ideal abrupt Schottky interface. Annealing processes performed at temperatures higher than 600 K alter this scheme, as revealed by X-ray absorption spectroscopy measurements, enhancing diffusion of Au atoms into InSe. In any case, the electronic barrier results to be determined by the Au overlayer formed.  相似文献   

9.
背入射Au/ZnO/Al结构肖特基紫外探测器   总被引:1,自引:4,他引:1       下载免费PDF全文
设计制作了一种Au/ZnO/Al结构的紫外探测器,光的入射方式采用背入射式。ZnO薄膜是用磁控溅射在蓝宝石衬底上制备的。I-V测试表明:Au与ZnO形成了肖特基接触。得到探测器的光响应峰值在352nm,截止边为382nm,可见抑制比达一个量级。由于该探测器是一种垂直结构器件,对于进一步实现ZnO紫外探测器阵列及单光子探测有很好的研究价值。  相似文献   

10.
In this study, hydrogen sensing properties of nanoporous Pd films based on Anodic Aluminium Oxide (AAO) templates grown on a silicon substrate have been investigated at various temperatures (25–100°C) and hydrogen concentrations (100–1000 ppm) to determine the temperature-sensitivity relationship. For this purpose, a hexagonally shaped AAO template of approximately 50 nm in diameter and 700 nm in length with 80 nm interpore distances was fabricated using two-step anodization of an Al film deposited on an n-type (100) oriented oxidized Si substrate. Then, the nanoporous surface of the AAO template was used as a substrate for supporting a nanoporous Pd film of an approximately thickness of 60 nm. The morphologies of the AAO template and Pd film coated on the AAO template were studied mainly by Scanning Electron Microscopy (SEM). Hydrogen sensing properties of the nanoporous Pd film were measured using a resistance transient method. It was found that the sensor response of the nanoporous Pd films on the AAO template was better than the traditional Pd thin film sensors, the sensitivity of the sensor was approximately 1.8% for 1000 ppm H2, and the detection limit was lower than 100 ppm at room temperature. The highest sensitivity was measured at room temperature.  相似文献   

11.
The various electrical properties and the nature of conduction mechanisms of magnesium phthalocyanine thin film devices with top and bottom aluminium electrodes have been investigated. The conduction mechanism was identified as injection limited essentially due to the electrode material. Even with the same electrode materials, the device showed asymmetric conduction behavior in the forward and reverse bias. In general the conduction was interpreted as a Schottky emission with barrier height Φs=1.07 eV for the forward bias and Φs=1.09 eV in the reverse bias. The effect of oxygen on the conductivity of the device has also been investigated. In the oxygen doped samples the conductivity is decreased which may be attributed to an interfacial layer between the electrode and the organic layer. Further in the oxygen doped sample while a Schottky emission is observed at lower voltages Poole-Frenkel conductivity was identified in the higher voltage region.  相似文献   

12.
This article reports the study of Pd Schottky contact on porous n-GaN for hydrogen gas sensing. Upon exposure to 2% H2 in N2, porous GaN sensor exhibited significant change of current. Morphological studies revealed that Pd contact deposited on porous GaN has ridge-trench-like morphology, a dense porous network was found in between the ridges. The dramatic change of current was attributed to the unique microstructure at Pd/porous GaN interface, which allowed higher accumulation of hydrogen; this resulted in a stronger effect of H-induced dipole layer and led to a significant change in the electrical characteristics of the porous sensor.  相似文献   

13.
We have established a model for the water forming reaction on Pd in the temperature range 350–475 K. Importantly, the model takes into account the possibility that hydrogen may absorb and adsorb at interface sites on supported Pd catalysts. It is shown that already at modest conditions interface adsorption may significantly affect reaction rates. The model may also be used to quantify the response of a hydrogen sensitive Pd-MOS device during hydrogen sensing in oxygen. In the case of Pd supported on SiO2, the concentration of interface sites is so low that interface hydrogen adsorption will have only a minor influence on a catalytic reaction. The fact that a Pd-MOS device may be used as a very sensitive hydrogen detector at atmospheric oxygen conditions, despite a steric oxygen blocking of hydrogen dissociation sites, is predicted by the model.  相似文献   

14.
GaN基肖特基势垒二极管结构优化研究进展   总被引:2,自引:1,他引:1       下载免费PDF全文
作为宽禁带半导体器件,GaN基肖特基势垒二极管(SBD)有耐高压、耐高温、导通电阻小等优良特性,这使得它在电力电子等领域有广泛应用。本文首先综述了SBD发展要解决的问题;然后,介绍了GaN SBD结构、工作原理及结构优化研究进展;接下来,总结了AlGaN/GaN SBD结构、工作原理及结构优化研究进展,并着重从AlGaN/GaN SBD的外延片结构、肖特基电极结构以及边缘终端结构等角度,阐述了这些结构的优化对AlGaN/GaN SBD性能的影响;最后,对器件进一步的发展方向进行了展望。  相似文献   

15.
Strong interests are recently emerging for development of integrated high-performance chemical sensor chips. In this paper, the present status of understanding and controlling the current transport in the GaN and AlGaN Schottky diodes is discussed from the viewpoint of chemical sensor applications. For this purpose, a series of works recently carried out by our group are reviewed in addition to a general discussion. First, current transport in GaN and AlGaN Schottky barriers is discussed, introducing the thin surface barrier (TSB) model to explain the anomalously large leakage currents. Following this, attempts to reduce the leakage currents are presented and discussed. Then, as an example of gas-phase sensors using Schottky barriers, a Pd/AlGaN/GaN Schottky diode hydrogen sensor developed recently by our group is presented with a discussion on the sensing mechanism and related current transport. On the other hand, in liquid-phase sensors, contact is made between liquid and semiconductor which is regarded as a kind of Schottky barrier by electrochemists. As one of such liquid-phase sensors, open-gate AlGaN/GaN heterostructure field effect transistor (HFET) pH sensor developed recently by our group is presented. Finally, a brief summary is given together with some remarks for future research.  相似文献   

16.
《Current Applied Physics》2014,14(4):538-542
Amorphous Pr0.7Ca0.3MnO3 (APCMO) films were grown on a Pt/Ti/SiO2/Si (Pt–Si) substrate at temperatures below 500 °C and the Pt/APCMO/Pt–Si device showed unipolar resistive switching behavior. Conduction behavior of the low resistance state (LRS) of the Pt/APCMO/Pt–Si device followed Ohm's law, and the resistance in LRS was independent of the size of the device, indicating that the conduction behavior in LRS can be explained by the presence of the conductive filaments. On the other hand, the resistance in the high resistance state (HRS) decreased with increasing the device size, and the conduction mechanism in the HRS was explained by Schottky emission.  相似文献   

17.
In this work, we study the effect of the thickness and porous structure of silicon carbide (PSC) layers on the electrical properties of Schottky photodiodes by using a palladium (Pd) layer deposited on non-porous silicon carbide (SiC) and porous-SiC (PSC) layers. The non-porous and porous-SiC layers were realized on a p-type silicon (Si(1 0 0)) substrate by pulsed laser deposition using a KrF laser (248 nm) and thermal deposition of a thin Pd layer. The porous structure of the SiC layer deposited was developed by an electrochemical (anodization) method. The electrical measurements were made at room temperature (295 K) in an air ambience. The effect of the porous surface structure and the thickness of the SiC layer were investigated by evaluating electrical parameters such as the ideality factor (n) and barrier height (?Bp). The thickness of the porous layer significantly affects the electrical properties of the Schottky photodiodes. Analysis of current-voltage (I-V) characteristics showed that the forward current might be described by a classical thermal emission theory. The ideality factor determined by the I-V characteristics was found to be dependent on the SiC thickness a value For a thin SiC layer (0.16 μm) n was around 1.325 with a barrier height 0.798 eV, while for a thick layer (1.6 μm), n and ?Bp were 1.026 and 0.890 eV, respectively for Pd/SiC-pSi. These results indicate Schottky photodiodes with high performance are obtained for thicker SiC layer and for thin layer of PSC. This effect showed the uniformity of the SiC layer. In the same case the ideality factor (n) decreases for Pd/PSC-pSi(1 0 0) for low SiC thickness by report of Pd/PSC-pSi(1 0 0) Schottky photodiodes, but for Pd/PSC-pSi(1 0 0) n increase for large SiC thickness layer. We notice that the barrier height (?Bp) was reversely depend by report of ideality factor. A spectral response value of (SR) of 34 mA/W at λ = 400 nm was measured for Pd/0.16 μm SiC-pSi Schottky photodiode with low SiC thickness. On the other hand, a value of SR = 0.14 mA/W at λ = 900 nm was obtained when we used PSC layer (Pd/PSC-pSi(1 0 0)). A reverse behaviour occurs for thicker SiC layer. Finally, it was found that the thickness and surface porous structure have strong effect on sensitivity.  相似文献   

18.
研究了高k栅介质对肖特基源漏超薄体SOI MOSFET性能的影响.随着栅介质介电常数增大,肖特基源漏(SBSD) SOI MOSFET的开态电流减小,这表明边缘感应势垒降低效应(FIBL)并不是对势垒产生影响的主要机理.源端附近边缘感应势垒屏蔽效应(FIBS)是SBSD SOI MOSFET开态电流减小的主要原因.同时还发现,源漏与栅是否对准,高k栅介质对器件性能的影响也不相同.如果源漏与栅交叠,高k栅介质与硅衬底之间加入过渡层可以有效地抑制FIBS效应.如果源漏偏离栅,采用高k侧墙并结合堆叠栅结构,可以提高驱动电流.分析结果表明,来自栅极的电力线在介电常数不同的材料界面发生两次折射.根据结构参数的不同可以调节电力线的疏密,从而达到改变势垒高度,调节驱动电流的目的. 关键词: k栅介质')" href="#">高k栅介质 肖特基源漏(SBSD) 边缘感应势垒屏蔽(FIBS) 绝缘衬底上的硅(SOI)  相似文献   

19.
This paper reports the use of graphite thin films as a counter electrode of a solid state photoelectrochemical cells of ITO/TiO2/PVC-LiClO4/graphite. The photoelectrochemical cells material was a screen-printed layer of titanium dioxide onto an ITO-covered glass substrate which was used as a working electrode of the device. The solid electrolyte used was PVC-LiClO4 that was prepared by solution casting technique. The graphite films which serve as a counter electrode were prepared onto glass substrate by electron beam evaporation technique at substrate temperatures variation of 25, 50, 100, 150 and 200 °C. The dependence of sheet resistance and surface morphology of the graphite films on substrate temperature were studied. The films deposited at 25 °C shows the smoothest surface morphology and the smallest grain size. Bigger grain size, rougher surface morphology of graphite film counter electrode. The current-voltage characteristics of four devices utilising the graphite counter electrode with different substrate temperature in dark as well as under illumination of 100 mWcm−2 light from a tungsten halogen lamp were recorded at room temperature and at 50 °C, respectively. It was found that the photovoltaic parameters of the device such as short-circuit current density, Jsc and open-circuit voltage, Voc increases with the decreasing average grain size of the graphite counter electrode. The device whose graphite film counter electrode was deposited onto the glass substrate at 25 °C gave the highest Jsc of 0.32 μA/cm2 and Voc of 117 mV, respectively.  相似文献   

20.
Hydrogen Sensors Based on AlGaN/AlN/GaN Schottky Diodes   总被引:2,自引:0,他引:2       下载免费PDF全文
Pt/AlGaN/AlN/GaN Schottky diodes are fabricated and characterized for hydrogen sensing. The Pt Schottky contact and the Ti/Al/Ni/Au ohmic contact are formed by evaporation. Both the forward and reverse currents of the device increase greatly when exposed to hydrogen gas. A shift of 0.3 V at 300 K is obtained at a fixed forward current after switching from N2 to 10%H2+N2. The sensor responses under different concentrations from 50ppm H2 to 10%H2+N2 at 373K are investigated. Time dependences of the device forward current at 0.5 V forward bias in N2 and air atmosphere at 300 and 373K are compared. Oxygen in air azcelerates the desorption of the hydrogen and the recovery of the sensor. Finally, the decrease of the Schottky barrier height and sensitivity Of the sensor are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号