首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We reexamine dipolar motion of condensate atoms in one-dimensional optical lattices and harmonic magnetic traps including quantum fluctuations within the truncated Wigner approximation. In the strong tunneling limit we reproduce the mean field results with a sharp dynamical transition at the critical displacement. When the tunneling is reduced, on the contrary, strong quantum fluctuations lead to finite damping of condensate oscillations even at infinitesimal displacement. We argue that there is a smooth crossover between the chaotic classical transition at finite displacement and the superfluid-to-insulator phase transition at zero displacement. We further analyze the time dependence of the density fluctuations and of the coherence of the condensate and find several nontrivial dynamical effects, which can be observed in the present experimental conditions.  相似文献   

2.
C. T. Hsieh  J. T. Lue   《Physics letters. A》2002,300(6):636-640
The classical, thermally driven transition from ferrimagnets to superparamagnets in Fe3O4 nanoparticles can be converted into another quantum phase by a transverse microwave magnetic field or by a strong internal anisotropic field. These fields, perpendicular to the Ising axis, can destroy the magnetic long-range order to quantum paramagnets as the fields exceed some critical values. We have exploited the spin resonance spectrometer to determine the dynamic spin susceptibility and the critical exponent γ, which is a power-law dependent spanning of the quantum critical point. Quantum phase transition observed at low temperatures for small magnetite nanoparticles induced by strong surface anisotropic field illustrates the fascinating interplay between thermal and quantum fluctuations in the vicinity of a quantum critical point.  相似文献   

3.
The interplay of geometric randomness and strong quantum fluctuations is an exciting topic in quantum many-body physics, leading to the emergence of novel quantum phases in strongly correlated electron systems. Recent investigations have focused on the case of homogeneous site and bond dilution in the quantum antiferromagnet on the square lattice, reporting a classical geometric percolation transition between magnetic order and disorder. In this study we show how inhomogeneous bond dilution leads to percolative quantum phase transitions, which we have studied extensively by quantum Monte Carlo simulations. Quantum percolation introduces a new class of two-dimensional spin liquids, characterized by an infinite percolating network with vanishing antiferromagnetic order parameter.  相似文献   

4.
常博  梁九卿 《中国物理 B》2011,20(1):17307-017307
We have studied the quantum fluctuations of inelastic spin-electron scattering in quantum dot with an embedded biaxial single molecule-magnet and particularly investigated the zero-frequency shot noise and Fano factor in different magnetic fields. It is found that the shot noise and Fano factor exhibit a stepwise behaviour as bias increases in the presence of interaction between the electron and molecule-magnet for a weak magnetic field. As magnetic field becomes strong, a dip is displayed in the shot-noise-bias curve due to the suppression of inelastic shot noise caused by the quantum tunneling of magnetisation. Because of the spontaneous inelastic tunneling at zero bias, a small shot noise occurs, which results in the case of Fano factor F >> 1. Moreover, our results show that the sweeping speed can also influence the shot noise and Fano factor obviously.  相似文献   

5.
A. Alastuey  B. Jancovici 《Physica A》1980,102(2):327-343
The equilibrium statistical mechanics of a nearly classical one-component plasma, submitted to a strong magnetic field, is studied, in three or two dimensions, by a suitable expansion of the Wigner distribution function. A strong magnetic field quenches the quantum fluctuations transverse to the field. The situation is especially simple for a two-dimensional plasma, which has a classical behaviour in the strong-field limit; as a consequence, a classical Wigner crystallization can be induced by the magnetic field.  相似文献   

6.
Xiang Hao 《Physics letters. A》2008,372(7):1119-1122
Correct swap action can be realized via the control of the anisotropic Heisenberg interaction in solid-state quantum systems. The conditions of performing a swap are derived by the dynamics of arbitrary bipartite pure state. It is found that swap errors can be eliminated in the presence of symmetric anisotropy. In realistic quantum computers with unavoidable fluctuations, the gate fidelity of swap action is estimated. The scheme of quantum computation via the anisotropic Heisenberg interaction is implemented in a one-dimensional quantum dots. The slanting and static magnetic field can be used to adjust the anisotropy.  相似文献   

7.
We present an experimental study of mesoscopic, two-dimensional electronic systems at high magnetic fields. Our samples, prepared from a low-mobility InGaAs/InAlAs wafer, exhibit reproducible, sample specific, resistance fluctuations. Focusing on the lowest Landau level, we find that, while the diagonal resistivity displays strong fluctuations, the Hall resistivity is free of fluctuations and remains quantized at its nu=1 value, h/e(2). This is true also in the insulating phase that terminates the quantum Hall series. These results extend the validity of the semicircle law of conductivity in the quantum Hall effect to the mesoscopic regime.  相似文献   

8.
Bose-Einstein condensates of atoms with non-zero spin are known to constitute an ideal system to investigate fundamental properties of magnetic superfluids. More recently it was realized that they also provide the fascinating opportunity to investigate the macroscopic amplification of quantum and classical fluctuations. This is strikingly manifested in a sample initially prepared in the m F = 0 state, where spin-changing collisions triggered by quantum fluctuations may lead to the creation of correlated pairs in m F = ±1. We show that the pair creation efficiency is strongly influenced by the interplay between the external trapping potential and the Zeeman effect. It thus reflects the confinement-induced magnetic field dependence of elementary spin excitations of the condensate. Remarkably, pair production in our experiments is therefore characterized by a multi-resonant dependence on the magnetic field. Pair creation at these resonances acts as strong parametric matter-wave amplifier. Depending on the resonance condition, this amplification can be extremely sensitive or insensitive to the presence of seed atoms. We show that pair creation at a resonance which is insensitive to the presence of seed atoms is triggered purely by quantum fluctuations and thus the system acts as a matter-wave amplifier for the vacuum state.  相似文献   

9.
The problem of exciton light absorption in quasi-two-dimensional inhomogeneous systems in a strong transverse magnetic field H is analyzed. We assume that a random Gaussian field (“white noise”) acting separately on an electron and a hole is due to (1) fluctuations in the quantum well thickness or (2) fluctuations in the concentrations of the solid solution components. The problem of a magnetoexciton in a random Gaussian white noise field has been reduced to the problem of the motion in an H-dependent effective field of a single particle with the effective magnetic mass of the exciton, which is a function of the magnetic field and parameters of the quantum wells, in a field characterized by “colored noise,” whose correlation function is different from that of the white noise field. In this approximation, the problem of a magnetoexciton in isolated and coupled quantum dots is considered. In the coherent-potential approximation, the exciton absorption in random fields of the first and second type in single and coupled quantum wells has been calculated. The absorption decreases as H increases in the range of strong magnetic fields, which is in agreement with experimental data. Zh. éksp. Teor. Fiz. 114, 1451–1465 (October 1998)  相似文献   

10.
《Physics letters. A》1998,244(4):196-200
A quantization scheme for an RLC circuit with a source is proposed and the fluctuations of the charge and the magnetic flux of the circuit in several quantum states are studied. The equation of motion for the density operator of the circuit is established and solved. The solutions are discussed.  相似文献   

11.
Can magnetic interactions between single-molecule magnets (SMMs) in a crystal establish long-range magnetic order at low temperatures deep in the quantum regime, where the only electron spin fluctuations are due to incoherent magnetic quantum tunneling (MQT)? Put inversely: can MQT provide the temperature dependent fluctuations needed to destroy the ordered state above some finite T(c), although it should basically itself be a T-independent process? Our experiments on two novel Mn4 SMMs provide a positive answer to the above, showing at the same time that MQT in the SMMs has to involve spin-lattice coupling at a relaxation rate equaling that predicted and observed recently for nuclear-spin-mediated quantum relaxation.  相似文献   

12.
Recent measurements of mesoscopic tunneling and cotunneling fluctuations in Coulomb blockaded ballistic quantum dots are presented. The statistics and parametric fluctuations (as a function of magnetic field) of Coulomb blockade peak heights are found to be consistent with random-matrix-theory predictions. Mesoscopic fluctuations of elastic cotunneling, measured in the valleys between blockade peaks, are also presented along with a semiclassical explanation of the observed enhancement of the magnetic field scale of cotunneling fluctuations compared to resonant tunneling fluctuations.  相似文献   

13.
We report the first experimental investigation of quantum chaotic scattering in an atomic system: in strong crossed magnetic and electric fields in an energy regime beyond the ionization threshold, where the classical dynamics is an example of chaotic scattering. We find Ericson fluctuations in the spectra for photo excitation into this regime. This result constitutes the first observation of Ericson fluctuations in atomic and molecular physics. Furthermore, we confirm the prediction that chaotic scattering in the underlying classical dynamics implies Ericson fluctuations.  相似文献   

14.
In order to study the magnetic properties of frustrated metallic systems, we present, for the first time, quantum Monte Carlo data on the magnetic susceptibility of the Hubbard model on triangular and kagomé lattices. We show that the underlying lattice structure determines the nature and the doping dependence of the magnetic fluctuations. In particular, in the doped kagomé case we find strong short-range magnetic correlations, which makes the metallic kagomé systems a promising field for studies of superconductivity.  相似文献   

15.
We study magnetism in magnetically doped quantum dots as a function of the confining potential, particle numbers, temperature, and strength of the Coulomb interactions. We explore the possibility of tailoring magnetism by controlling the nonparabolicity of the confinement potential and the electron-electron Coulomb interaction, without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at higher temperatures than in the noninteracting case. The temperature of the onset of magnetization can be controlled by changing the number of particles as well as by modifying the quantum confinement and the strength of the Coulomb interactions. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations.  相似文献   

16.
We theoretically study how magnetic modulation can be used to manipulate the transport properties of heterostructures formed by a thin film of a three-dimensional topological insulator sandwiched between slabs of a normal insulator. Employing the k ? p scheme, in the framework of a continual approach, we argue that electron states of the system are spin-polarized when ultrathin magnetic insertions are incorporated into the film. We demonstrate that (i) the spin-polarization magnitude depends strongly on the magnetic insertion position in the film and (ii) there is the optimal insertion position to realize quantum anomalous Hall effect, which is a function of the material parameters, the film thickness and the topological insulator/normal insulator interface potential. For the heterostructure with a pair of symmetrically placed magnetic insertions, we calculate a phase diagram that shows a series of transitions between distinct quantum regimes of transverse conductivity. We provide consistent interpretation of recent experimental findings in the context of our results.  相似文献   

17.
Quantum annealing is a novel method for combinatorial optimization problems. In this paper, we discuss the appropriate choice of quantum fluctuations in quantum annealing. The existence of room of choices of quantum fluctuations is an advantage of quantum annealing over simulated annealing. We consider the ferromagnetic interaction as a source of quantum fluctuations. Using the mean-field annealing scheme, we show that quantum annealing by ferromagnetic interaction is more efficient than the conventional quantum annealing and simulated annealing in the ground state search of the random-field Ising model.  相似文献   

18.
By applying density functional theory, we find strong evidence for an itinerant nature of magnetism in two families of iron pnictides. Furthermore, by employing dynamical mean field theory with continuous time quantum Monte Carlo as an impurity solver, we observe that the antiferromagnetic metal with small magnetic moment naturally arises out of coupling between unfrustrated and frustrated bands. Our results point to a possible scenario for magnetism in iron pnictides where magnetism originates from a strong instability at the momentum vector (π,π,π) while it is reduced by quantum fluctuations due to the coupling between weakly and strongly frustrated bands.  相似文献   

19.
Spin-charge states of correlated electrons in a one-dimensional quantum dot attached to interacting leads are studied in the nonlinear transport regime. With nonsymmetric tunnel barriers, regions of negative differential conductance induced by spin-charge separation are found. They are due to a correlation-induced trapping of higher-spin states without magnetic field and are associated with a strong increase in the fluctuations of the electron spin.  相似文献   

20.
The electron spin resonance (ESR) spectrometer, a very sensitive instrument with fast detecting window to explore quantum phase transitions for magnetic nanoparticles, was exploited to study the fascinating interplay between thermal and quantum fluctuations in the vicinity of a quantum critical point. We have measured ESR in ferrofluid samples containing nanosize particles of Fe2O3. The evolution of the ESR spectrum with temperature suggests that quantum tunneling of spins occurs in single domain magnetic particles in the low temperature regime. The effects of various microwave fields, particle sizes, and temperatures on the magnetic states of single domain spinel ferrite nanoparticles are investigated. We can consistently explain experimental data assuming that, as the temperature decreases, the spectrum changes from superparamagnetic (SPR) to blocked SPR and finally evolves quantum superparamagnetic behaviour as the temperature lowers down further. A nanoparticle system of a highly anisotropic magnetic material can be qualitatively specified by a simple quantum spin model, or by the Heisenberg model with strong easy-plane anisotropy.Received: 29 August 2003, Published online: 15 October 2003PACS: 76.30.-v Electron paramagnetic resonance and relaxation - 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.) - 05.30.-d Quantum statistical mechanics - 75.50.Dd Nonmetallic ferromagnetic materials  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号