首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分子印迹聚合物与磁性纳米材料结合,制备成磁性分子印迹纳米敏感膜,这样做不仅可以发挥分子印迹聚合材料的优势,而且磁性纳米粒子可有效提高电化学传感器的灵敏度、稳定性以及生物相容性等.近年来将磁性分子印迹纳米敏感膜应用于电化学传感器制备成的磁性分子印迹电化学传感器得到了较快的发展.本文就近5年来磁性分子印迹电化学传感器敏感膜...  相似文献   

2.
Selective piezoelectric odor sensors using molecularly imprinted polymers   总被引:3,自引:0,他引:3  
Molecular imprinting technique has been used to create sensors with a predetermined selectivity for molecules in the gas phase. Piezoelectric quartz crystals coated with a 2-methylisoborneol (MIB) imprinted polymer gave responses which were consistently 5–10 Hz (1.1–1.3 times) higher than those of sensors coated with a non-imprinted polymer. Geosmin, another tertiary alcohol odorant with an earthy odor resembling, and often accompanying MIB, produced almost equal responses on either imprinted- or non-imprinted sensors. A number of other odorants were examined and their responses to the non-imprinted sensors were found to be similar to or greater than their responses to the imprinted sensors. The responses of MIB to the imprinted sensors were always the highest, while other odorants produced equal or higher responses using the non-imprinted sensor. The sensor has a detection limit of ca. 5 mg l−1 and a dynamic range of at least 1000 mg l−l. When the time taken for the sensor to stabilize is used as the response, instead of the frequency change, the detection limit is lowered to ca. 200 μg l−l.  相似文献   

3.
4.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

5.
Song  Wei  Chen  Yu  Xu  Juan  Yang  Xiao-Rong  Tian  Dan-Bi 《Journal of Solid State Electrochemistry》2010,14(10):1909-1914
Molecularly imprinted polymers (MIPs) have been applied as molecular recognition elements to chemical sensors. In this paper, we combined the use of MIPs and electropolymerization to produce a sensor which was capable of detecting dopamine (DA). The MIP electrode was obtained by electrocopolymerization of o-phenylenediamine and resorcinol in the presence of the template molecular DA. The MIP electrode exhibited a much higher current response compared with the non-imprinted electrode. The response of the imprinted sensor to DA was linearly proportional to its concentration over the range 5.0 × 10−7-4.0 × 10−5 M. The detection limit of DA is 0.13 μM (S/N = 3). Moreover, the proposed method could discriminate between DA and its analogs, such as ascorbic acid and uric acid. This method was successfully applied to the determination of DA in dopamine hydrochloride injection and healthy human blood serum. These results revealed that such a sensor fulfilled the selectivity, sensitivity, sped, and simplicity requirements for DA detection and provided possibilities of clinical application in physiological fields.  相似文献   

6.
Selective sample treatment using molecularly imprinted polymers   总被引:2,自引:0,他引:2  
The molecularly imprinted polymers (MIPs) are synthetic polymers possessing specific cavities designed for a target molecule. By a mechanism of molecular recognition, the MIPs are used as selective sorbents for the solid-phase extraction of target analytes from complex matrices. MIPs are often called synthetic antibodies in comparison with immuno-based sorbents; they offer some advantages including easy, cheap and rapid preparation and high thermal and chemical stability. This review describes the use of MIPs in solid-phase extraction with emphasis on their synthesis, the various parameters affecting the selectivity of the extraction, their potential to selectively extract analytes from complex aqueous samples or organic extracts, their on-line coupling with LC and their potential in miniaturized devices.  相似文献   

7.
This article summarises our work on the development of voltammetric sensors based on molecularly imprinted polymers. Several recognition elements and integration strategies were used:1.membranes electropolymerised at the electrode surface; 2.casting of polymeric membranes by drop-coating a solution of pre-formed polymer (polyphosphazene) and template in a low-boiling-point solvent on to the electrode surface; 3.preparation of composite membranes containing conductive material (graphite or carbon black), acrylic-type molecularly imprinted polymers (small particle size), and PVC as binder; and 4.in-situ polymerisation of a thin layer of acrylic imprinted polymer deposited on the electrode surface by spin coating.All the options evaluated offer the possibility of controlling electrode characteristics such as hydrophobic/hydrophilic character, permeability, or film thickness, which are essential for obtaining good sensor performance.  相似文献   

8.
Chen Y  Shimizu KD 《Organic letters》2002,4(17):2937-2940
[reaction: see text] A new method is presented for the measurement of enantiomeric excess (ee) utilizing molecularly imprinted polymers (MIPs). The method is demonstrated to be accurate and rapid, as the ee values can be calculated from straightforward concentration measurements. The MIP-based assay can also be adapted to measure the ee of samples of differing initial concentrations.  相似文献   

9.
A sensitive electrochemical molecularly imprinted sensor was developed for the detection of estradiol, by electropolymerization of p-aminothiophenol functionalized gold nanoparticles in the presence of estradiol as template molecule. The extraction of the template leads to the formation of cavities that are able to recognize and bind estradiol with high affinity. The performance of the developed sensor for the detection of estradiol was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as redox probe. The molecularly imprinted sensor exhibits a broad linear range, between 3.6 fM and 3.6 nM and a limit of quantification of 1.09 fM. Compared to the non-imprinted sensor, the imprinted sensor exhibits high affinity for the binding of estradiol. Moreover, selectivity studies, performed towards binding of testosterone, a hormone with similar chemical structure, proved high sensor selectivity. Furthermore, the molecularly imprinted sensor was applied for the analysis of spiked river samples with good recoveries.  相似文献   

10.
The glycidyl azide polymers converted easily to glycidyl 1,2,3-triazolyl polymers by the click chemistry in good to high yields. These reactions are affected deeply by the electron effects. The electron donating groups made the reaction faster.  相似文献   

11.
Molecularly imprinted polymers (MIPs) are tailor-made polymers with high selectivity for a given analyte, or group of structurally related compounds. The influence of the process parameters (the moles of functional monomer and cross-linker, the selection of functional monomer and solvent) on the preparation of oseltamivir (OS)-imprinted polymers was investigated. A mathematical method for uniform design to optimize these selected parameters and to increase the MIP selectivity for template molecules was applied. The optimal conditions to synthesize MIP were 0.69 mmol 30% acrylamide (AA) + 70% 4-Vinylpyridine (4-VP) and 5.0 mmol ethylene glycol dimethacrylate (EGDMA) copolymerized in 5 ml toluene in the presence of 0.1 mmol OS. MIP showed high affinity and selectivity for separation of the template molecule from other compounds. In the present study, we have established an effective LC-MS/MS method to identify and quantify OS with good sensitivity, accuracy and precision.  相似文献   

12.
The dependence of enantio-selective chromatographic performance on particle size, as measured by separation factor, was investigated for one-monomer molecularly imprinted polymers (OMNiMIPs) compared to traditionally formed EGDMA/MAA molecularly imprinted polymers (MIPs). Five particle size ranges were compared (<20 μm, 20-25 μm, 25-38 μm, 38-45 μm, and 45-63 μm), revealing that the particle sizes above 25 μm provided the highest separation factor, and thus the best enantiomer separation, for both imprinted polymers. Other chromatographic parameters such as the number of theoretical plates and resolution exhibited only minor changes for the OMNiMIPs as the particle size changed, except for particles 20 μm and below. However, the number of theoretical plates and resolution for EGDMA/MAA are higher for particles in the 20-25 μm range. Thus, chromatographic factors for the EGDMA/MAA polymers are better in this range, despite better enantioselectivity for particle sizes above 25 μm. In contrast, OMNiMIPs generally show the most favorable performance for particle sizes in the 38-45 μm range. It was also found that decreasing flow rate resulted in improved enantioselectivity for both MIPs for all particle sizes.  相似文献   

13.
This work reports on the development of a new voltammetric sensor for diphenylamine based on the use of a miniaturized gold electrode modified with a molecularly imprinted polymer recognition element. Molecularly imprinted particles were synthesized ex situ and further entrapped into a poly(3,4-ethylenedioxythiophene) polymer membrane, which was electropolymerized on the surface of the gold electrode. The thickness of the polymer layer was optimized in order to get an adequate diffusion of the target analyte and in turn to achieve an adequate charge transfer at the electrode surface. The resulting modified electrodes showed a selective response to diphenylamine and a high sensitivity compared with the bare gold electrode and the electrode modified with poly(3,4-ethylenedioxythiophene) and non-imprinted polymer particles. The sensor showed a linear range from 4.95 to 115 μM diphenylamine, a limit of detection of 3.9 μM and a good selectivity in the presence of other structurally related molecules. This sensor was successfully applied to the quantification of diphenylamine in spiked apple juice samples.  相似文献   

14.
A molecularly imprinted polymer was synthesized for the purpose of sinapic acid isolation from Egyptian nutraceutical Botrytis italica, L. (broccoli) due to its prominent medicinal and wide pharmacological activities. A computational study was first developed to determine the optimal template to functional monomer molar ratio. Based on the computational results, five polymers were synthesized using a bulk polymerization method with sinapic acid as the template molecule. Evaluation of the synthesized polymers binding performance was carried out using batch rebinding assay, which revealed that the molecularly imprinted polymer of molar ratio (1:4:20), template to functional monomer (4‐vinyl pyridine) to crosslinker (ethylene glycol dimethacrylate) was of optimum performance, thus, this polymer was applied for sinapic acid isolation from closely related analogues. This represents a more practical approach to isolate sinapic acid from different natural extracts selectively.  相似文献   

15.
This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested.Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.  相似文献   

16.
This article reviews the progress and developments achieved in the past five years (2000–2005) in the application of optical analytical techniques to the evaluation of molecularly imprinted polymer (MIP) characteristics. The MIP binding efficiency, recognition processes and selectivity have been intensively studied by optical means due to the general high sensitivity and simplicity of the utilisation of optical techniques. In addition, recent progress in the covalent linkage of MIPs to optical transducers has allowed for the realisation of highly efficient and robust optical MIP-based molecular recognition sensors. The review provides insight into the various approaches to the optical interrogation of MIPs, and is organised according to the type of optical technique employed (fluorescence, UV/Vis and infrared spectroscopy, surface plasmon resonance, chemiluminescence, refractive interference spectroscopy and Raman scattering) and the detailed strategies applied. The review also covers the recent progress achieved in the area of optical sensors based on MIPs.  相似文献   

17.
An iprodione‐imprinted polymer was prepared by copolymerization of methacrylamide and ethylene glycol dimethacrylate using a noncovalent imprinting approach. Methacrylamide was chosen using molecular dynamics simulations. To concentrate iprodione from hydro‐alcoholic solutions, batch sorption of iprodione on the imprinted polymer were conducted. The equilibrium time for iprodione sorption is 20 min, and the corresponding kinetic mechanism follows the pseudo‐second order indicating a strong interaction between iprodione and the imprinted polymer. Langmuir, Freundlich, and Dubinin–Radushkevich models were used to fit the isotherm of iprodione sorption. The imprinted polymer was found to be more efficient than the nonimprinted polymer for the uptake of iprodione, as revealed by its higher adsorption energy, affinity, and capacity. Finally, a selectivity study was conducted on the imprinted and the nonimprinted polymers to sorb three fungicides. It shows that the imprinted polymer could be used as a preconcentration phase in a multiresidue analysis of fungicides in hydroalcoholic medium.  相似文献   

18.
An efficient enzyme model exhibiting enantioselective esterase activity was prepared by using molecular imprinting techniques. The enantiomerically pure phosphonic monoesters 4 L and 5 L were synthesized as stable transition-state analogues. They were used as templates connected by stoichiometric noncovalent interactions to two equivalents of the amidinium binding site monomer 1. After polymerization and removal of the template, the polymers were efficient catalysts for the hydrolysis of certain nonactivated amino acid phenylesters (2 L, 2 D, 3 L, 3 D) depending on the template used. Imprinted catalyst IP4 (imprinted with 4 L) enhanced the hydrolysis of the corresponding substrate 2 L by a factor of 325 relative to that of a buffered solution. Relative to a control polymer containing the same functionalities, prepared without template 4 L, the enhancement was still about 80-fold, showing the highest imprinting effect up to now. In cross-selectivity experiments a strong substrate selectivity of higher than three was found despite small differences in the structure of the substrate and template. Plots of initial velocities of the hydrolysis versus substrate concentration showed typical Michaelis-Menten kinetics with saturation behavior. From these curves, the Michaelis constant K(M) and the catalytic constant k(cat) can be calculated. The enantioselectivity shown in these values is most interesting. The ratio of the catalytic efficiency k(cat)/K(M), between the hydrolysis of 2 L- and 2 D-substrate with IP4, is 1.65. This enantioselectivity derives from both selective binding of the substrate (K(M)L/K(M)D=0.82), and from selective formation of the transition state (k(cat)L/k(cat)D=1.36). Thus, these catalysts give good catalysis as well as high imprinting and substrate selectivity. Strong competitive inhibition is caused by the template used in imprinting. This behavior is also quite similar to the behavior of natural enzymes, for which these catalysts are good models.  相似文献   

19.
分子印迹膜电化学传感器检测土壤中莠去津   总被引:2,自引:0,他引:2  
本文报道了一种对莠去津有识别特性的分子印迹膜的制备,即在含和不含模板分子(莠去津)的情况下,通过循环伏安技术在金电极表面沉积2-巯基苯并咪唑,制备了2-巯基苯并咪唑聚合膜.利用循环伏安法对印迹和非印迹膜行为进行了评价,对分子印迹膜的影响因素进行了筛选和优化.实验表明,该分子印迹膜对莠去津具有良好的选择性和灵敏度.莠去津的还原峰电流与莠去津的浓度在 1.2 ×10 - 8mal/L~8.0 ×10 - 5mol/ L 范围内具有良好的线性关系( r=0.99862),检出限可达 3.0 ×10 - 9mol/ L.将此传感器用于土壤中莠去津的测定,回收率在90.8% ~ 98.2%之间,取得了很好的结果.  相似文献   

20.
Amperometric detection of nicotine (NIC) was carried out on a titanium dioxide (TiO2)/poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode by a molecular imprinting technique. In order to improve the conductivity of the substrate, PEDOT was coated onto the sintered electrode by in situ electrochemical polymerization of the monomer. The sensing potential of the NIC-imprinted TiO2 electrode (ITO/TiO2[NIC]/PEDOT) in a phosphate-buffered saline (PBS) solution (pH 7.4) containing 0.1 M KCl was determined to be 0.88 V (vs. Ag/AgCl/saturated KCl). The linear detection range for NIC oxidation on the so-called ITO/TiO2[NIC]/PEDOT electrode was 0-5 mM, with a sensitivity and limit of detection of 31.35 μA mM−1 cm−2 and 4.9 μM, respectively. When comparing with the performance of the non-imprinted one, the sensitivity ratio was about 1.24. The sensitivity enhancement was attributed to the increase in the electroactive area of the imprinted electrode. The at-rest stability of the ITO/TiO2[NIC]/PEDOT electrode was tested over a period of 3 days. The current response remained about 85% of its initial value at the end of 2 days. The ITO/TiO2[NIC]/PEDOT electrode showed reasonably good selectivity in distinguishing NIC from its major interferent, (−)-cotinine (COT). Moreover, scanning electrochemical microscopy (SECM) was employed to elucidate the surface morphology of the imprinted and non-imprinted electrodes using Fe(CN)63−/Fe(CN)64− as a redox probe on a platinum tip. The imprinted electrode was further characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号