首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CuS hollow spheres have been successfully synthesized through a facile microemulsion-template-interfacial-reaction route using copper naphthenate as metal precursor and thioacetamide as the source of S(2-). In this way, hollow spheres could be obtained directly since the reaction of two reactants respectively dissolved in two different phases of an oil-in-water (o/w) microemulsion only occurs at the oil/water interface. Therefore, it is a key for forming hollow spheres to optimize the interfacial reaction rate by controlling reaction conditions. Furthermore, the size of the hollow spheres can be tailored by changing the content of oil phase. In this study, the average diameter of the CuS hollow spheres can be adjusted from 110 to 280 nm by changing the content of oil phase from 0.5 ml to 1.5 ml. In addition, the reaction temperature is a very important factor for forming CuS hollow spheres and the appropriate reaction temperature is about 50 °C.  相似文献   

2.
Monodispersed hollow ZnS microspheres have been successfully synthesized by a facile ethylenediamine tetraacetic acid (EDTA) mediated hydrothermal route. The sizes of the hollow spheres vary from 1.5 to 3.5 microm when the reaction temperature varied from 130 to 230 degrees C. The formation of these hollow spheres is attributed to the oriented aggregation of ZnS nanocrystals around the gas-liquid interface between H(2)S and water. EDTA plays important role as chelating ligand and capping reagent, which regulates the release of Zn(2+) ions for the formation of ZnS hollow spheres. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy, photoluminescence, and Raman spectroscopy. The obtained ZnS hollow spheres show a sharp and photostable UV emission approximately 370 nm, which is attributed to the recombination process associated with interstitial sulfur vacancy.  相似文献   

3.
Summary: We describe a way to obtain biomimetic, hierarchical surface morphologies. In order to mimic natural surfaces more accurately such as lotus leaves and gecko feet, we employ a strategy that bears many of the attractive characteristics of natural materials synthesis. The system in question consists of a photocurable monomer and water. To this quasi‐two‐component system we add polymer latex spheres. The monomer–water interface is then manipulated according to the well‐established science of complex fluids. Drawing from the rich phase behavior of particle‐stabilized emulsions, we demonstrate the creation of complex biomimetic morphologies over many length scales. The resulting structures are then solidified by crosslinking the monomer with UV light.

Comparison of an AFM image of a PMMA colloidosome assembly with that of the textured surface of a superhydrophobic Hygoryza aristata leaf (inset).  相似文献   


4.
The self‐assembly of dispersed polymer‐coated ferromagnetic nanoparticles into micron‐sized one‐dimensional mesostructures at a liquid–liquid interface was reported. When polystyrene‐coated Co nanoparticles (19 nm) are driven to an oil/water interface under zero‐field conditions, long (≈ 5 μm) chain‐like assemblies spontaneously form because of dipolar associations between the ferromagnetic nanoparticles. Direct imaging of the magnetic assembly process was achieved using a recently developed platform consisting of a biphasic oil/water system in which the oil phase was flash‐cured within 1 s upon ultraviolet light exposure. The nanoparticle assemblies embedded in the crosslinked phase were then imaged using atomic force microscopy. The effects of time, temperature, and colloid concentration on the self‐assembly process of dipolar nanoparticles were then investigated. Variation of either assembly time t or temperature T was found to be an interchangeable effect in the 1D organization process. Because of the dependence of chain length on the assembly conditions, we observed striking similarities between 1D nanoparticle self‐assembly and polymerization of small molecule monomers. This is the first in‐depth study of the parameters affecting the self‐assembly of dispersed, dipolar nanoparticles into extended mesostructures in the absence of a magnetic field. © 2008 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 46: 2267–2277, 2008  相似文献   

5.
CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO4 as cadmium source and Na2S2O3 as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H2O2. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres.  相似文献   

6.
选用复配表面活性剂,用水代替柴油作为携带介质,将超疏水的纳米聚硅均匀稳定地分散在水中,制备成水基纳米聚硅乳液.室内试验结果表明:所制备的水基纳米聚硅乳液的分散性和稳定性较好,制备过程简单易行,便于实现工业化生产.粒径为10 nm左右的SiO2微粒在水中分散良好,该乳液遇盐发生破乳,释放出来的纳米聚硅微粒粒径在5~10 ...  相似文献   

7.
A novel technique called the "lipid-coated ice droplet hydration method" is presented for the preparation of giant vesicles with a controlled size between 4 and 20 microm and entrapment yields for water-soluble molecules of up to about 30%. The method consists of three main steps. In the first step, a monodisperse water-in-oil emulsion with a predetermined average droplet diameter between 4 and 20 microm is prepared by microchannel emulsification, using sorbitan monooleate (Span 80) and stearylamine as emulsifiers and hexane as oil. In the second step, the water droplets of the emulsion are frozen and separated from the supernatant hexane solution by precipitation, followed by a removal of the supernatant and followed by the replacement of Span 80 by using a hexane solution containing egg yolk phosphatidylcholine, cholesterol, and stearylamine (5:5:1, molar ratio). This procedure is performed at -10 degrees C to keep the water droplets of the emulsion in a frozen state and thereby to avoid extensive water droplet coalescence. In the third step, hexane is evaporated at -4 to -7 degrees C and an external water phase is added to the remaining mixture of lipids and water droplets to form giant vesicles that have an average size in the range of that of the initial emulsion droplets (4-20 microm). The entrapment yield and the lamellarity of the vesicles obtained depend on the lipid/water droplet ratio and on the composition of the external water phase. At high lipid/water droplet ratio, the giant vesicles have a thicker membrane (indicating multilamellarity) and a higher entrapment yield than in the case of a low lipid/water droplet ratio. The highest entrapment yield ( approximately 35%) is obtained if the added external water phase contains preformed unilamellar egg phosphatidylcholine vesicles with an average diameter of 50 nm. The addition of these small vesicles minimizes the water droplet coalescence during the third step of the vesicle preparation, thereby decreasing the extent of release of water-soluble molecules originally present in the water droplets. The GVs prepared can be extruded through polycarbonate membranes to yield large unilamellar vesicles with about 100 nm diameter. This size reduction, however, leads to a decrease in the entrapment yield to about 12% due to solute leakage from the vesicles during the extrusion process.  相似文献   

8.
Nuclear magnetic spin-lattice relaxation experiments have been performed in partially filled porous glasses with wetting and nonwetting fluids. The frequency dependence of the spin-lattice relaxation rate in Vycor (4 nm pores) and VitraPOR #5 (1 microm pores) silica glasses was studied as a function of the filling degree with the aid of field-cycling NMR relaxometry. The species of primary interest were water ("polar") and cyclohexane ("nonpolar"). Spin-lattice relaxation was examined in the frequency range from 1 kHz to 400 MHz with the aid of a field-cycling NMR relaxometer and an ordinary 400 MHz NMR spectrometer. Three different mobility states of the fluid molecules are distinguished: The adsorbed state at the pore walls, the bulklike liquid phase, and the vapor phase. The adsorbate spin-lattice relaxation rate is dominated by the "reorientation mediated by translational displacements" (RMTD) mechanism taking place at the adsorbate/matrix interface at frequencies low enough to neglect rotational diffusion of the molecules. The experimental data are analyzed in terms of molecular exchange between the different mobility states. Judged from the dependence of the spin-lattice relaxation rates on the filling degree, limits for slow and fast exchange (relative to the RMTD time scale) can be distinguished and identified. It is concluded that water always shows the features of slow exchange irrespective of the investigated pore sizes and filling degrees. This is in contrast to cyclohexane which is subject to slow exchange in micrometer pores, whereas fast exchange occurs in nanoscopic pores. The latter case implies that the vapor phase contributes to molecular dynamics in this case at low filling degrees while it is negligible otherwise.  相似文献   

9.
Here, we consider in detail the problem of the shape of the capillary meniscus around a charged colloidal particle, which is attached to a fluid interface: oil/water or air/water. The meniscus profile is influenced by the electric field created by charges at the particle/nonpolar fluid boundary. We digitized the coordinates of points from the meniscus around silanized glass spheres (200-300 mum in radius) attached to the tetradecane/water interface. The theoretical meniscus shape is computed in three different ways that give numerically coincident results. It is proven that for sufficiently small particles the meniscus profile can be expressed as a superposition of pure electric and gravitational deformations. Special attention is paid to the comparison of theory and experiment. A procedure for data processing is developed that allows one to obtain accurate values of the contact angle and surface charge density from the fit of the experimental meniscus profile. For all investigated particles, excellent agreement between theory and experiment is achieved. The results indicate that the electric field gives rise to an interfacial deformation of medium range and considerable amplitude.  相似文献   

10.
The stages of transformation of a colloidal crystalline film of latex spheres to a new periodic structure were imaged by atomic force microscopy. Colloidal crystalline films were prepared with 320 nm diameter poly(styrene-co-2-hydroxyethyl methacrylate) (PSt/HEMA) spheres. The hexagonally ordered surfaces of the colloidal crystalline films were transformed with styrene vapor at room temperature to a new morphology having holes in the surface and the same periodicity as the original films. The surfaces of colloidal crystals and the transformed films have a raspberry-like texture superposed on the 320 nm hexagonal periodicity. Both height images and phase images reveal that the latex spheres shrink and the transformation proceeds by an order-disorder-order sequence. The final structure is an interconnected colloidal array with smaller polystyrene particles dispersed in a continuous PSt/HEMA matrix.  相似文献   

11.
We have demonstrated that polystyrene latex coated with titania nanosheets can be fabricated into a close-packed colloidal crystalline array, and that these coated colloidal spheres can be used to control the peak position of optical stop bands through the coating. The titania-nanosheets-coated polystyrene latex was prepared by the layer-by-layer (LBL) assembly coating process, involving alternating lamination of cationic polyelectrolytes and anionic titania nanosheets on monodisperse polystyrene latex particles. The Bragg diffraction peak of the colloidal crystalline array shifted to longer wavelengths with the coating of titania nanosheets. This red shift was caused by an increase in refractive index upon coating, as revealed by angle-resolved reflection spectra measurements. The current work suggests new possibilities for the creation of advanced colloidal crystals having tunable optical properties from tailored colloidal spheres.  相似文献   

12.
Structure of microparticles in solid-stabilized emulsions   总被引:3,自引:0,他引:3  
Emulsions of oil and water stabilized by adsorbed solid particles are known as solid-stabilized emulsions (often referred to as Pickering emulsions). Using confocal microscopy, we have studied the assembly of colloidal-sized polystyrene particles in poly(dimethylsiloxane)-in-water solid-stabilized emulsions. Monodisperse polystyrene particles, when included in the emulsions at low concentrations, were found to form small patches with local "hexagonal" order, separated by other particle-free domains. Polystyrene particles with different sizes (1 and 4 microm) and different wettability could simultaneously segregate to the emulsion interface; even mixtures of hydrophobic and hydrophilic solid particles were found to simultaneously segregate to the same interface.  相似文献   

13.
Stable nanoclusters (approximately 2 nm in diameter) of copper, silver, gold, palladium, and ruthenium coated with hydrophobic coronas are easily trapped in self-assembled "soft crystal" hexagonal phase gels made of water and surfactants. The system's crystal structure and phase behavior are studied in detail. A partial phase diagram showing the hexagonal phase region for the water/SDS/toluene region is presented. High-energy X-ray scattering and cross-polarized optical microscopy experiments show that the clusters are tightly confined within the tubes. The thermal gel-fluid transitions of the hexagonal phase are investigated, and it is shown that the hexagonal phase can melt and recrystallize repeatedly. The melt/gel cycles enable easy trapping of various metal clusters in pre-prepared hexagonal phases. In contrast to spherical micelles, the hexagonal phase doped with metal clusters can grow without limit, basically up to the container walls (Ru-doped soft crystals grew to 0.5 mm over 2 months, forming wormlike tubes that are more than 50 microm long but only 7-10 nm in diameter).  相似文献   

14.
Sterically stabilized polystyrene latexes (previously described by Amalvy, J. I.; et al. Chem. Commun. 2003, 1826) were evaluated as pH-responsive particulate emulsifiers for the preparation of both oil-in-water and water-in-oil emulsions. The steric stabilizer was a well-defined AB diblock copolymer where A is poly(2-(dimethylamino)ethyl methacrylate) and B is poly(methyl methacrylate). Several parameters were varied during the emulsion preparation, including the polarity of the oil phase, the latex concentration, surface concentration of copolymer stabilizer, and solution pH. Nonpolar oils such as n-dodecane gave oil-in-water emulsions, and polar oils such as 1-undecanol produced water-in-oil emulsions. In both cases, these emulsions proved to be stimulus-responsive: demulsification occurred rapidly on adjusting the solution pH. Oils of intermediate polarity such as methyl myristate or cineole led to emulsions that underwent transitional inversion on adjusting the solution pH. All emulsions were polydisperse and typically ranged from 40 to 400 microm diameter, as judged by optical microscopy and Malvern Mastersizer measurements. Critical point drying of the emulsion droplets, followed by scanning electron microscopy studies, confirmed that the latex particles were adsorbed as a single monolayer at the oil/water interface, as anticipated.  相似文献   

15.
提出一种在悬浮液气-液界面漂浮组装亚微米单分散聚苯乙烯(PS)微球和纳米SiO2颗粒二元胶粒晶体的新方法, 并系统研究了漂浮组装机理. 研究表明, 聚苯乙烯微球和二氧化硅两种胶体颗粒在悬浮液气-液界面的漂浮组装是以PS微球的组装为主导的. 在一定PS微球相浓度范围内, 悬浮液中PS 微球与SiO2颗粒的初始体积配比基本不影响PS微球有序组装的形成. PS微球粒径在150-500 nm时易于形成有序排列, 较小或较大粒径的PS微球难以形成有序排列. SiO2颗粒的组装是一种以PS微球为“基底”的沉积过程. 二元胶粒晶体中SiO2颗粒的体积分数由其在混合悬浮液中的相浓度所决定.  相似文献   

16.
In this work, an improved vertical deposition method, namely, a flow-controlled vertical deposition (FCVD) method, was used to grow colloidal crystals with large spherical colloids in water solvent and to infiltrate the colloidal crystals. Using the FCVD method, latex spheres as large as 2 microm can be fabricated into colloidal crystals in water. In addition, the method works very well for controlling surface morphologies of silica-infiltrated opals. Furthermore, fabrication of colloidal crystal heterostructures was demonstrated.  相似文献   

17.
柳常青  马亭  方孝林  梅博文 《色谱》1997,15(2):173-175
采用二硝基本甲酸一十六烷基三甲基溴化脓缓冲体系对油田水中短链脂肪酸进行了分析。应用间接紫外法,使脂肪酸在数分钟之内得以分离检测。研究表明,当缓冲溶液pH值为9.0、电解质浓度为5.0mmol/L、表面活性剂浓度为0.5mmol/L和甲醇含量为5%时可达到最佳的分高效果。  相似文献   

18.
A novel and facile approach to manipulate the morphology of Cu2+‐ion‐specific assembly of conjugated polymer by coordinative interaction at an oil–water two‐phase interface is present. The application of increasing importance is the use of π‐conjugated polymers as receptors, exploiting their ability to selectively form complexes, which can obviously change the optical properties in solution and induce the formation of varied solid nano/microstructures. By this method, microtubes are formed through self‐rolling of a strained ionic bilayer film at the oil/water interface.  相似文献   

19.
An artificial oil/water interface was created in normal microemulsions. Various well-dispersed inorganic nanoparticles were successfully fabricated at this micelle interface, and a "hot liquid annealing" process was used to crystallize the products. Owing to the large solubility of the source materials in the water phase, the colloidal nanoparticles can easily be prepared on a large scale. Compared with traditional reverse-microemulsion methods, the method reported here yields larger amounts of colloidal particles but with the same quality.  相似文献   

20.
Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号