首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
汪金祥 《应用光学》1991,12(4):20-23,48
导出微通道板动态范围的表达式,给出提高动态范围的几种可行途径,简要介绍一种高动态范围微通道板的主要特性。  相似文献   

2.
微通道板玻璃的二次电子发射系数   总被引:2,自引:0,他引:2  
高秀敏  蔡春平 《应用光学》1998,19(4):9-17,8
讨论微通道板玻璃的二次电子发射系数及其影响因素。通过将Rb^ 、Cs^2 离子部分或全部代替玻璃中的K^ 离子,调整玻璃网络结构参数以及PbO与Bi2O3的摩尔比例,使玻璃的二次电子发射系数从2.7增加到3.7,改善微通道板的增益稳定性和寿命。  相似文献   

3.
半导体玻璃微通道板的研制   总被引:1,自引:0,他引:1  
介绍了半导体玻璃微通道板的主要性能,并与传统铅硅酸盐玻璃的相关性能进行了比较。阐述了半导体玻璃的研制工艺,研究了利用半导体玻璃材料制备微通道板的工艺途径,开发了靠玻璃本身体电导性质而无需氢还原工艺的微通道板,即半导体玻璃微通道板。研制出孔径为20μm、外径为12mm的半导体玻璃微通道板,实验利用紫外光电法测试了微通道板的增益、闪烁噪声和成像性能。结果表明新型微通道板具有明显的电子增益和低的闪烁噪声,并且通道表面稳定;利用磷硅酸盐玻璃材料可以实现体导电微通道板的制备。  相似文献   

4.
研究了微通道板像增强器动态范围特性,分别分析了以亮度增益、信噪比和分辨力等参数作为判断微通道板像增强器动态范围依据的可行性,形成了以分辨力和输出亮度为评判依据的微通道板像增强器动态范围测试方法,搭建了相应的动态范围测量装置,并对测量装置的组成部分进行了限制设计。对微通道板像增强器动态范围测试装置的分析显示:建立的测量装置可以实现10-5~103lx的较宽动态范围测量,能够满足微通道板像增强器动态范围测试的要求。  相似文献   

5.
闫金良 《应用光学》1997,18(3):13-16
介绍微通道板电子透射膜在三代微光像增强器中的作用,推导电子透射膜死电压的理论表达式,测量电子透射膜的电子透过特性,并进行初步分析和讨论。  相似文献   

6.
微通道板电子透射膜的工作特性   总被引:6,自引:6,他引:0  
闫金良 《光子学报》2004,33(2):164-166
利用静电贴膜技术在MCP输入面制备了4 nm厚Al2O3非晶态电子透射膜,此工艺不造成MCP通道壁内表面碳污染. 探讨了贴膜与气体辉光放电的关系,测量了MCP电子透射膜的电子透过特性和离子阻挡特性. 实验表明,4 nm厚Al2O3非晶态电子透射膜能有效地透过电子,阻止反馈离子.  相似文献   

7.
微通道板增益疲劳机理研究   总被引:2,自引:0,他引:2  
微通道板的增益疲劳是微通道板的主要问题之一,本文分析了微通道板的表面结构模型,同通道板活性表面上碱金属的逸出和碳的增加是导致微通道板的增益疲劳的主要原因,另外,探讨碱金属逸出的机理和碳污染的来源,介绍延长微通道板工作寿命的有效方法。  相似文献   

8.
众所周知,通道的直径不一致(孔径a不一致)是使微通道板器件的最大分辨率下降的原因之一。因为M与α有关,这就决定着通道问的增益系数M不一致,即产生出空间噪声干扰图象观察。当然,瞬态噪声也会使微通道板的象质变坏。在瞬态噪声的情况下,增益系数的起伏是由每一通道的二次电子发射系数不规则特性所引起的。微通道板输出端总的瞬态  相似文献   

9.
应用俄歇电子能谱对微通道板表面发雾区域进行分析。分析结果表明,发雾区碳含量比正常区高三倍。由此可推测出,发雾是由碳污染引起的,而这种碳污染很可能是残留于微通道板上的某些有机物在烧氢时碳化所致。  相似文献   

10.
潘京生  亓鲁  肖洪亮  张蓉  周建勋  蒲冬冬  吕景文 《物理学报》2012,61(19):194211-194211
条纹相机通常采用微通道板的内增强或外增强这两种方式来提高信号探测阈值, 也由此引入了微通道板饱和效应对系统动态范围的限定. 通过一个非连续电阻电容打拿极链的通道模型, 对微通道板的饱和效应进行了描述,说明了在条纹相机中, 微通道板输入输出的线性范围限定于通道的贮存电荷, 即使是在外增强方式中采用低阻抗微通道板,传导电流的补偿作用也极其有限, 微通道板内增强和外增强条纹相机应具有相近的动态范围, 低阻抗微通道板仅在高重复率的连续拍摄时方可发挥功效, 同时还说明了微通道板增益的正确设置对条纹相机动态范围的重要影响.  相似文献   

11.
比较了高性能微通道板和标准型微通道板在经过相同或类似制管工艺处理前、后电阻的变化,测定了高性能微通道板分别在真空烘烤和2个不同阶段电子清刷后电阻随电压及温度的变化关系。实验结果表明:高性能微通道板的热稳定性优于标准型微通道板,其电阻温度系数为-0.007/℃;经过第二阶段清刷后,电阻随电压的变化缓慢,电压系数为-1.11×10-4V-1;用这种材料和工艺制作的低电阻、大动态范围、高稳定性微通道板可满足特种探测器的需求。  相似文献   

12.
叙述微通道板玻璃的电阻率和其氢原处理后的表面电阻率以及表面电阻率的影响因素。按照玻璃钢络结构观点并就微通道板制造工艺中出现的电阻率差异进行了分析。最后,给出了改进措施。  相似文献   

13.
微通道板离子阻挡膜   总被引:1,自引:1,他引:0  
闫金良 《应用光学》1996,17(1):12-14
微通道板离子阻挡膜在第三代微光像增强器中起着重要作用,本文在分析离子阻挡膜形成原理的基础上,给出实验方案,最后,测量和分析了带膜微通道板的性能。  相似文献   

14.
阐述了新一代硅微通道板的主要性能。采用定向离子深度刻蚀技术在2和4硅片上刻蚀了四组不同直径的硅微通道板微孔阵列,分别采用PECVD技术和液体化学沉积两种方法制作了硅微通道板的连续打拿极,从而探索了研制新一代硅微通道板的途径。利用紫外光电法测试了硅微通道板的增益和增益均匀性。实验结果表明,如果进一步改进制备工艺,硅微通道板可以实现较传统微通道板更高的增益和更好的增益均匀性。  相似文献   

15.
王长骏  张继胜 《应用光学》1992,13(1):30-32,38
叙述预测微通道板工作寿命试验过程,指出微通道板工作寿命曲线服从负指数分布。着重利用回归分析方法,建立微通道板工作寿命回归方程,并利用它预测微通道板工作寿命。这种方法不仅适用于二代微通道板的工作寿命预测,也适用于三代微通道板的寿命预测。  相似文献   

16.
新型微球板电子倍增器和微通道板相比具有高增益、无离子反馈、制备简单、造价低廉等优点。介绍了微球板电子倍增器的工作原理、特点和广阔的应用前景。由于微球板基体的形成技术是微球板制备的关键技术,论文从理论上研究了微球板基体烧结过程中的烧结速率。并采用自行设计组分的高铅玻璃,用立式炉成珠设备进行了玻璃微珠的制备。探索了微球板制备过程中玻璃微珠的分级技术、微球板电子倍增器基体成型工艺和技术。制备出基本满足要求的微球板电子倍增器基体。给出了制造的样品和文献上样品结构的SEM对比照片,最后对实验过程中的一些现象进行了分析,并给出了实验的结论。  相似文献   

17.
杨青  陈烽  侯洵 《应用光学》2006,27(6):535-538
电子在微通道内传输过程可以采用解析法和蒙特卡罗模拟进行研究,解析法的优点是物理图像更清晰,但对电子渡越时间的弥散特性不能给出满意的解释。采用统计学的方法对电子在微通道内传输过程的时间分布特性进行了讨论,得到了电子渡越时间的分布函数表达式,并据此可以得到时间弥散度与二次倍增次数的关系,即整个二次电子的渡越时间呈指数分布,且在最可机时间内集中了大量的二次电子。此外,由于碰撞次数对电子渡越时间弥散度的影响,因此在作为高时间分辨元件时应该考虑适当增加通道板两端的电压,以减少碰撞次数,从而降低渡越时间的弥散度和提高整个器件的时间分辨率。  相似文献   

18.
刘术林  陈赣中 《应用光学》2001,22(1):14-19,48
本文综述微通道板作为离子探测器的应用,特别是在时间习行质谱仪中的应用,介绍了国外学者在提高低能离子探测效率方面所作的工作,最后简要描述用微能道板探测各种离子方面的研究成果。  相似文献   

19.
对微通道板(Micro-Channel Plate,MCP)的电子输运特性进行仿真研究.利用数值方法分析微光像增强器电子光学系统,得到电场分布.通过电场分布追踪MCP电子运动轨迹,确定电子在荧光屏像面上的落点分布.据此研究MCP电子输运,分析斜切角、通道直径及两端电压对电子输运、像增强器调制传递函数(Modulation Transfer Function,MTF)及分辨率的影响.结果显示,当MCP斜切角为14°、通道直径为5.0μm、两端电压为900 V时,MCP具有良好的电子输运特性,像增强器MTF特性好,分辨率高.  相似文献   

20.
微通道板动态特性的数值模拟   总被引:1,自引:0,他引:1  
对皮秒高压脉冲驱动下微通道板中电子的渡越时间特性和增益特性进行了数值模拟,在电压脉冲波形分别为高斯形、三角形和梯形时,得到了电子渡越时间与电压脉冲宽度、幅度的关系曲线。在考虑入射电子为一高斯电子脉冲的情况下,获得了增益曲线的半峰全宽和峰值随脉冲电压幅度、宽度的变化规律。分析结果表明:当微通道板两端所加电压为梯形波时,微通道板中电子的渡越时间特性和增益特性较加三角波和高斯波要好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号