首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
减小阻力尤其是底部阻力,是飞行器增加航程的重要手段,而船尾布局则是减小底部阻力的有效措施。为研究船尾修型设计在亚声速段对飞行器阻力的影响规律,对某飞行器外形开展船尾修型设计并进行数值模拟,分析了不同船尾形状和船尾角度对飞行器阻力的影响情况,并开展了风洞试验验证。结果表明,船尾修型设计可以有效减小底部阻力;船尾采用曲线过渡的减阻效果优于直线过渡;在限定船尾过渡段尺寸(轴向长度80 mm、法向高度40 mm)的情况下,船尾角度超过45°的修型设计,对底部的减阻效果更为明显;风洞试验结论与数值分析结果一致。  相似文献   

2.
The pressure drag of blunt bluff bodies is highly relevant in many practical applications, including to the aerodynamic drag of road vehicles. This paper presents theory revealing that a mean drag reduction can be achieved by manipulating wake flow fluctuations. A linear feedback control strategy then exploits this idea, targeting attenuation of the spatially integrated base (back face) pressure fluctuations. Large-eddy simulations of the flow over a D-shaped blunt bluff body are used as a test-bed for this control strategy. The flow response to synthetic jet actuation is characterised using system identification, and controller design is via shaping of the frequency response to achieve fluctuation attenuation. The designed controller successfully attenuates integrated base pressure fluctuations, increasing the time-averaged pressure on the body base by 38%. The effect on the flow field is to push the roll-up of vortices further downstream and increase the extent of the recirculation bubble. This control approach uses only body-mounted sensing/actuation and input–output model identification, meaning that it could be applied experimentally.  相似文献   

3.
Results of experimental and numerical investigations of the effect of gas injection through a permeable porous surface on the drag coefficient of a cone-cylinder body of revolution in a supersonic flow with the Mach number range M h = 3–6 are presented. It is demonstrated that gas injection through a porous nose cone with gas flow rates being 6–8% of the free-stream flow rate in the mid-section leads to a decrease in the drag coefficient approximately by 5–7%. The contributions of the decrease in the drag force acting on the model forebody and of the increase in the base pressure to the total drag reduction are approximately identical. Gas injection through a porous base surface with the flow rate approximately equal to 1% leads to a threefold increase in the base pressure and to a decrease in the drag coefficient. Gas injection through a porous base surface with the flow rate approximately equal to 5% gives rise to a supersonic flow zone in the base region.  相似文献   

4.
The total drag force on the surface of a body, which is the sum of the form drag and the skin friction drag in a 2D domain, is numerically evaluated by integrating the energy dissipation rate in the whole domain for an incompressible Stokes fluid. The finite element method is used to calculate both the energy dissipation rate in the whole domain as well as the drag on the boundary of the body. The evaluation of the drag and the energy dissipation rate are post-processing operations which are carried out after the velocity field and the pressure field for the flow over a particular profile have been obtained. The results obtained for the flow over three different but constant area profiles—a circle, an ellipse and a cross-section of a prolate spheroid—with uniform inlet velocity are presented and it is shown that the total drag force times the velocity is equal to the total energy dissipation rate in the entire finite flow domain. Hence, by calculating the energy dissipation rate in the domain with unit velocity specified at the far-field boundary enclosing the domain, the drag force on the boundary of the body can be obtained.  相似文献   

5.
超声速钝体逆向喷流减阻的数值模拟研究   总被引:1,自引:0,他引:1  
为研究逆向喷流技术对超声速钝体减阻的影响,采用标准k-ε湍流模型,通过求解二维Navier-Stokes方程对超声速球头体逆向冷喷流流场进行了数值模拟,并着重分析了喷口总压、喷口尺寸对流场模态和减阻效果的影响。计算结果显示:随着喷流总压的变化,流场可出现两种流动模态,即长射流穿透模态和短射流穿透模态;喷流能使球头体受到的阻力明显减小;存在最大减阻临界喷流总压值(在所研究参数范围内最大减阻可达51.1%);在其它喷流物理参数不变时,随着喷口尺寸的增大,同一流动模态下的减阻效果下降。本文的研究对超声速钝体减阻技术在工程上的应用具有一定的参考价值。  相似文献   

6.
A study of drag-reducing flow in curved pipes was conducted. In contrast to earlier studies we show that if we use a modified definition of drag reduction that includes only the turbulence effects, we observe indeed the same level of drag reduction in both coiled and straight pipes. More complex results showing reduced drag reduction compared to curved pipes were achieved with elbows. Two elbows of different size and type were tested in turbulent flow of both water and drag-reducing surfactant solution. A more elaborate analysis was conducted for a half-inch threaded elbow with a ratio of curvature radius to diameter of 1.2. The pressure drop and heat transfer were measured in a section downstream from the elbow over a distance of x/D = 130 in order to investigate the hydrodynamic and thermal developments of the flow. The pressure drop coefficient of the elbow was calculated for water and a surfactant solution, based on the total increase in pressure drop in the system due to the presence of the elbow. For a larger welded elbow of 6″ diameter some drag reduction was measured for the surfactant solution.  相似文献   

7.
A boundary element-wake numerical approach is developed and used to determine all drag components of a three dimensional body in a wind tunnel flow. The approach decomposes the total drag into three components; the profile drag, the cross flow drag (induced drag), and the tunnel-wall effect component, each with its own physical significance. Additionally, the cross flow drag component is divided into two components, the vortex component and the source (dilatation) component. In the present approach, the transverse kinematics relations are expressed as integral representations of the axial vorticity and the transverse dilatation (source strength). This advantage permits the vortex and the source drag computations to be performed only in the vortical area of the transverse wake and hence avoids excessive computations. Also, the procedures distinguish the contribution of the transverse dilatation to the cross flow drag. The validity of the present procedure is examined by comparing the present results against the experimental data of reference [1] for a car and wing models. The comparison shows that the present computed total drag, for the wing and the car models, agrees very well with the experimental data, provided that the wake data are measured at survey planes moderately distant from the body.  相似文献   

8.
应用当地DFD(Domain-Free Discretization)方法对包含复杂运动边界的扑翼流场进行了数值模拟。该方法通过壁面法线方向的外插确定外部相关点上的流动变量值,同时强加相应的边界条件。应用这种方法,动边界流动的模拟可以在固定网格上实现,无需为了跟随物体的运动而在每个时间步上对网格进行实时更新。对三种拍动模式的双翅流场进行了数值模拟,升、阻力系数时间历程的计算结果与参考文献的实验数据吻合很好,验证了当地DFD方法处理复杂动边界问题的可靠性。最后,数值模拟了完整昆虫模型的扑翼流场,并详细分析了涡系结构和飞行机理。  相似文献   

9.
The present paper deals with the wake of a 2D body equipped with a drag reduction device. The device is a 3D trailing edge consisting of alternate segments of blunt base and spanwise cavity. The aerodynamic mechanisms acting on the near wake are studied in a water tunnel from schlieren observations by thermally marking large scale structures. The results show that the efficiency of the device is directly related to the presence of longitudinal vortices. An optimization of the shapes in subsonic compressible flow had led to a decrease of more than 40% of the total drag of the profile.  相似文献   

10.
The relationship between the flow resistance of a turbulent flow over triangular ribs regularly distributed on a wall surface and the velocity distribution around the ribs was investigated experimentally. A concentric cylinder device composed of an inner test cylinder and an outer cylinder was employed to measure the flow resistance using the torque of the shaft of the inner cylinder and the velocity distribution of the flow around a rib by laser Doppler velocimetry (LDV) simultaneously. We prepared four inner test cylinders having 4, 8, 12 and 16 triangular ribs on the surface with the same interval between them. Each rib had an isosceles right triangle V-shape and a height of 2 mm. To investigate the relationship between flow resistance and velocity distribution, we estimated the frictional drag and pressure drag acting on the surface of the ribs separately using the velocity distribution. Therefore, we could also estimate the total flow resistance using the velocity distribution. As a result of the experiment, the flow resistance and the attachment point downstream of the rib were shown to depend on the distance between ribs. Moreover, the flow resistance estimated using the velocity distribution had good agreement with the flow resistance measured using the torque of the inner cylinder.  相似文献   

11.
Semi-empirical models for unsteady lift and drag are developed to predict the spectral features of the unsteady forces on a finite-length, right circular cylinder in cross-flow. In general, the models consist of two parts; the spatial variation of r.m.s wall pressure on the cylinder, and the correlation lengths which describe the spatial extent of the correlation of the unsteady wall pressures. Experiments were conducted in a low noise wind tunnel as a function of cylinder diameter Reynolds number (19 200<Re<32 000) and the Strouhal number (0·05< St<3·33), to measure the statistics of the unsteady wall pressures on a model cylinder. These results are incorporated into the theoretical models, and predictions of the spectral characteristics of the lift and drag are made. The r.m.s. wall pressures on the cylindrical surface are found to have the largest amplitude near the cylinder end-cap, and on the rearward portion of the cylinder body. The high levels in these locations are attributed to the separated flow region over the end-cap. The circumferential and axial length-scales decrease exponentially with Strouhal number. Both length-scales exhibit maxima near the Strouhal shedding frequency of St=0·21. The axial length-scales are found to depend on the measurement reference location due to the three-dimensional flow and separated flow region near the end-cap. The unsteady lift and drag predictions using the models developed in this work agree well with previously measured unsteady force data measured on inertial hydrophones exposed to flow. The broadband unsteady lift is found to be greater than the broadband unsteady drag by nominally 3dB.  相似文献   

12.
The Ahmed body is used as a reference model for fundamental studies of car-type bluff body aerodynamics, in particular focused on the influence of the rear slant angle on the drag coefficient. The objectives of the present work are to obtain reliable drag coefficient comparable to the literature and to explain, based on the nature of the flow, its variation when changing the rear slant angle from 10° to 40°. The drag coefficients measured in both an open and a closed test sections differ by less than 0.5% which proves the reliability and reproducibility of the results. The sensitivity of the drag coefficient to some parameters such as the model roughness or the oncoming boundary layer and the lack of precise information on these parameters in the literature could explain the difference observed with the Ahmed drag coefficient data. The various types of measurement techniques used in the study underline their complementarity. The combination of particle image velocimetry and oil visualization provides a deeper understanding of the flow behaviour around the Ahmed body and a physical interpretation of the drag coefficient evolution.  相似文献   

13.
Results of numerical and experimental modeling of a supersonic flow (M = 4.85) around a model of a streamwise-aligned cylinder with a cellular-porous insert permeable for the gas on the frontal face of the cylinder are described. Experimental data on the influence of the pore structure and the length of the porous cylindrical insert on the model drag, pressure on the frontal face of the cylinder, and flow pattern are obtained. Numerical modeling includes solving Favre-averaged Navier-Stokes equations, which describe the motion of a viscous compressible heat-conducting gas. The system is supplemented with a source term taking into account the drag of the porous body within the framework of the continuum model of filtration. Data on pressure and velocity fields inside the porous body are obtained in calculations, and the shape of an effective pointed body whose drag is equal to the drag of the model considered is determined. The calculated results are compared with the measured data and schlieren visualization of the flow field.  相似文献   

14.
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial computational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynamics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydrodynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton–Levenspiel, and a combination of Wen–Yu/Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and distribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations of a DFB system with CPFD.  相似文献   

15.
Results have been obtained in recent years which make it possible to get an idea of the optimal shape of a three-dimensional body at high supersonic speeds. It has been shown [1–6] that bodies with a cross section in the form of a star with certain limitations have the least wave drag and remain optimal with respect to total drag with approximate account for the friction forces. The transition from the optimal body of revolution to the star-shaped body of equivalent volume and length makes a several-fold drag reduction. These theoretical results, initially obtained on the basis of the Newton drag law, were then confirmed by the exact solution [7] for bodies which were close in form to the optimal. Subsequent experimental studies investigated the flow pattern between two lobes representing an element of the star over a wide range of included angles. The experiments showed that there actually exists a flow between the rays corresponding to the solution [7], that this flow is stable, and that the wave drag calculated from the pressure distribution over the body surface is several fold less than for the equivalent cone. Although these results are encouraging, they do not prove the advantages of the star-shaped form for practical use. The point is that the star has considerably more wetted area; therefore the effect of the marked reduction of the wave drag may be compensated by an increase of the friction drag. The references above to the theory which considers friction are not convincing, since the friction estimates are approximate, while real friction is complicated by the presence of shock waves within the flow, the possibility of a turbulent boundary layer, separation, etc. Not all these factors are amenable to calculation, and it is clear that conclusions can be drawn on star drag only after making direct measurements of the total force acting on a model in a flow.In the following we describe the results of force tests conducted with a star model at M6 and 8. During the tests the flow pattern in the wake behind the body was photographed in addition to the force measurements.The authors wish to thank G. I. Petrov, G. G. Chernyi, M. Ya. Yudelovich, and A. A. Churilin for assistance in carrying out the experimentation.  相似文献   

16.
An aerospike attached to a blunt body significantly alters its flowfield and influences aerodynamic drag at high speeds. The dynamic pressure in the recirculation area is highly reduced and this leads to the decrease in the aerodynamic drag. Consequently, the geometry of the aerospike has to be simulated in order to obtain a large conical recirculation region in front of the blunt body to get beneficial drag reduction. Axisymmetric compressible Navier–Stokes equations are solved using a finite volume discretization in conjunction with a multistage Runge–Kutta time stepping scheme. The effect of the various types of aerospike configurations on the reduction of aerodynamic drag is evaluated numerically at a length to diameter ratio of 0.5, at Mach 6 and at a zero angle of incidence. The computed density contours are showing satisfactory agreement with the schlieren pictures. The calculated pressure distribution on the blunt body compares well with the measured pressure data on the blunt body. Flowfield features such as formation of shock waves, separation region and reattachment point are examined for the flat-disc spike and on the hemispherical disc spike attached to the blunt body. One of the critical heating areas is at the stagnation point of a blunt body, where the incoming hypersonic flow is brought to rest by a normal shock and adiabatic compression. Therefore, the problem of computing the heat transfer rate near the stagnation point needs a solution of the entire flowfield from the shock to the spike body. The shock distance ahead of the hemisphere and the flat-disc is compared with the analytical solution and a good agreement is found between them. The influence of the shock wave generated from the spike is used to analyze the pressure distribution, the coefficient of skin friction and the wall heat flux facing the spike surface to the flow direction.  相似文献   

17.
The flow of a two-dimensional foam around an obstacle provides a benchmark experiment in which to study the transition from discrete to continuous properties of this complex fluid. The interaction between the obstacle and the walls of the channel is simulated using the Surface Evolver. The lift and drag forces on a circular obstacle are measured and the contributions to the total force of the film network and the bubble pressures are assessed. As the distance of the obstacle from the wall decreases, the lift force is found to increase significantly whereas the drag force does not vary greatly.A paper presented at the AERC 2005  相似文献   

18.
Experiments were conducted in the 12-inch diameter tunnel at the Applied Research Laboratory, Pennsylvania State University using the tunnel wall boundary layer to determine the influence of surface roughness on microbubble drag reduction. To accomplish this, carbon dioxide was injected through a slot at rates of 0.001 m3/s to 0.011 m3/s, and the resulting skin friction drag measured on a 317.5-mm long by 152.4-mm span balance. In addition to the hydrodynamically smooth balance plate, additional plates were covered with roughly 75, 150, and 300 micron grit. Over the speed range tested of 7.6, 10.7, and 13.7 m/s, the roughness ranged from smooth to fully rough. Not only was microbubble drag reduction achieved over the rough surfaces, but the % drag reduction at a given gas flow rate was larger for larger roughness. Scaling of the data is discussed. Comparison against results of a polymer drag reduction experiment, using the same facility, is made. Finally, a measure of the expected persistence of the phenomenon is given.  相似文献   

19.
The results are given of a theoretical and experimental investigation into supersonic flow over bodies with star-shaped transverse section and flat faces having an equivalent circular cone of elongation 1.3 as a function of the number of petals of the star-shaped body and the interior radius at its midsection. Data are given on the coefficient of wave drag of such bodies, and the total drag calculated using a semiempirical theory is compared with the results of weight measurements.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 34–40, May–June, 1982.  相似文献   

20.
In the present experimental study the effect of a control disc mounted at the rear of an axisymmetric blunt-based body of revolution, first studied by Mair, is investigated in the Reynolds number range 3×103ReD≤5×104 . As the distance of the control disc from the blunt base is increased, four vortex shedding regimes are identified: at small distances there is no effect, then a sharp increase of vortex shedding activity and total drag is observed, followed by an interval with reduced activity and drag and finally at large distances a regime where the flow around the main body and disc become essentially independent, i.e. where the drag forces of the two elements become additive. The near and far wake velocity fields corresponding to the different regimes are documented with time- and phase-averaged hot-wire and LDA measurements, with spectral analysis of the data and with flow visualizations of the near wake. The results are used to develop an improved understanding of the instability mechanism leading to high vortex shedding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号