首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Pyrazolothiazole-substituted pyridine conjugates are an important class of heterocyclic compounds with an extensive variety of potential applications in the medicinal and pharmacological arenas. Therefore, herein, we describe an efficient and facile approach for the synthesis of novel pyrazolo-thiazolo-pyridine conjugate 4, via multicomponent condensation. The latter compound was utilized as a base for the synthesis of two series of 15 novel pyrazolothiazole-based pyridine conjugates (5–16). The newly synthesized compounds were fully characterized using several spectroscopic methods (IR, NMR and MS) and elemental analyses. The anti-proliferative impact of the new synthesized compounds 5–13 and 16 was in vitro appraised towards three human cancer cell lines: human cervix (HeLa), human lung (NCI-H460) and human prostate (PC-3). Our outcomes regarding the anti-proliferative activities disclosed that all the tested compounds exhibited cytotoxic potential towards all the tested cell lines with IC50 = 17.50–61.05 µM, especially the naphthyridine derivative 7, which exhibited the most cytotoxic potential towards the tested cell lines (IC50 = 14.62–17.50 µM) compared with the etoposide (IC50 = 13.34–17.15 µM). Moreover, an in silico docking simulation study was performed on the newly prepared compounds within topoisomerase II (3QX3), to suggest the binding mode of these compounds as anticancer candidates. The in silico docking results indicate that compound 7 was a promising lead anticancer compound which possesses high binding affinity toward topoisomerase II (3QX3) protein.  相似文献   

2.
Natural polyamines (PAs) are involved in the processes of proliferation and differentiation of cancer cells. Lipophilic synthetic polyamines (LPAs) induce the cell death of various cancer cell lines. In the current paper, we have demonstrated a new method for synthesis of LPAs via the multicomponent Ugi reaction and subsequent reduction of amide groups by PhSiH3. The anticancer activity of the obtained compounds was evaluated in the A-549, MCF7, and HCT116 cancer cell lines. For the first time, it was shown that the anticancer activity of LPAs with piperazine fragments is comparable with that of aliphatic LPAs. The presence of a diglyceride fragment in the structure of LPAs appears to be a key factor for the manifestation of high anticancer activity. The findings of the study strongly support further research in the field of LPAs and their derivatives.  相似文献   

3.
The chalcone and quinoline scaffolds are frequently utilized to design novel anticancer agents. As the continuation of our work on effective anticancer agents, we assumed that linking chalcone fragment to the quinoline scaffold through the principle of molecular hybridization strategy could produce novel compounds with potential anticancer activity. Therefore, quinoline-chalcone derivatives were designed and synthesized, and we explored their antiproliferative activity against MGC-803, HCT-116, and MCF-7 cells. Among these compounds, compound 12e exhibited a most excellent inhibitory potency against MGC-803, HCT-116, and MCF-7 cells with IC50 values of 1.38, 5.34, and 5.21 µM, respectively. The structure–activity relationship of quinoline-chalcone derivatives was preliminarily explored in this report. Further mechanism studies suggested that compound 12e inhibited MGC-803 cells in a dose-dependent manner and the cell colony formation activity of MGC-803 cells, arrested MGC-803 cells at the G2/M phase and significantly upregulated the levels of apoptosis-related proteins (Caspase3/9 and cleaved-PARP) in MGC-803 cells. In addition, compound 12e could significantly induce ROS generation, and was dependent on ROS production to exert inhibitory effects on gastric cancer cells. Taken together, all the results suggested that directly linking chalcone fragment to the quinoline scaffold could produce novel anticancer molecules, and compound 12e might be a valuable lead compound for the development of anticancer agents.  相似文献   

4.
The naturally occurring neocryptolepine (5-Methylindolo [2,3-b]quinoline) and its analogs exhibited prominent anticancer and antimalarial activity. However, the main problem of this class of compounds is their poor aqueous solubility, hampering their bioavailability and preventing their clinical development. To overcome the problem of insolubility and to improve the physicochemical and the pharmacological properties of 5-Methylindolo [2,3-b]quinoline compounds, this work was designed to encapsulate such efficient medical compounds into mesoporous silica oxide nanoemulsion (SiO2NPs). Thus, in this study, SiO2NPs was loaded with three different concentrations (0.2 g, 0.3, and 0.6 g) of 7b (denoted as NPA). The findings illustrated that the nanoparticles were formed with a spherical shape and exhibited small size (less than 500 nm) using a high concentration of the synthesized chemical compound (NPA, 0.6 g) and good stabilization against agglomeration (more than −30 mv). In addition, NPA-loaded SiO2NPs had no phase separation as observed by our naked eyes even after 30 days. The findings also revealed that the fabricated SiO2NPs could sustain the release of NPA at two different pH levels, 4.5 and 7.4. Additionally, the cell viability of the produced nanoemulsion system loaded with different concentrations of NPA was greater than SiO2NPs without loading, affirming that NPA had a positive impact on increasing the safety and cell viability of the whole nanoemulsion. Based on these obtained promising data, it can be considered that the prepared NPA-loaded SiO2NPs seem to have the potential for use as an effective anticancer drug nanosystem.  相似文献   

5.
A simple and efficient one-pot, three-component synthetic method for the preparation of coumarin-3-carboxamides was carried out by the reaction of salicylaldehyde, aliphatic primary/secondary amines, and diethylmalonate. The protocol employs piperidine-iodine as a dual system catalyst and ethanol, a green solvent. The main advantages of this approach are that it is a metal-free and clean reaction, has low catalyst loading, and requires no tedious workup.  相似文献   

6.
A library of bile-acid-appended triazolyl aryl ketones was synthesized and characterized by detailed spectroscopic techniques such as 1H and 13C NMR, HRMS and HPLC. All the synthesized conjugates were evaluated for their cytotoxicity at 10 µM against MCF-7 (human breast adenocarcinoma) and 4T1 (mouse mammary carcinoma) cells. In vitro cytotoxicity studies on the synthesized conjugates against MCF-7 and 4T1 cells indicated one of the conjugate 6cf to be most active against both cancer cell lines, with IC50 values of 5.71 µM and 8.71 µM, respectively, as compared to the reference drug docetaxel, possessing IC50 values of 9.46 µM and 13.85 µM, respectively. Interestingly, another compound 6af (IC50 = 2.61 µM) was found to possess pronounced anticancer activity as compared to the reference drug docetaxel (IC50 = 9.46 µM) against MCF-7. In addition, the potent compounds (6cf and 6af) were found to be non-toxic to normal human embryonic kidney cell line (HEK 293), as evident from their cell viability of greater than 86%. Compound 6cf induces higher apoptosis in comparison to 6af (46.09% vs. 33.89%) in MCF-7 cells, while similar apoptotic potential was observed for 6cf and 6af in 4T1 cells. The pharmacokinetics of 6cf in Wistar rats showed an MRT of 8.47 h with a half-life of 5.63 h. Clearly, these results suggest 6cf to be a potential candidate for the development of anticancer agents.  相似文献   

7.
In this work a microwave-assisted Knoevenagel/Michael/cyclization multicomponent domino methodology, using ethanol as solvent and the ionic liquid 1-methylimidazolium chloride as catalyst was developed for the synthesis of spiro compounds. The reaction conditions considered ideal were determined from a methodological study varying solvent, catalyst, amount of catalyst, temperature, and heating mode. Finally, the generality of the methodology was evaluated by exploring the scope of the reaction, varying the starting materials (isatin, malononitrile, and barbituric acid). Overall, the twelve spiro compounds were synthesized in good yields (43–98%) and the X-ray structure of compound 1b was obtained. In addition, the in vitro antiproliferative activities of the spirocycles against four types of human cancer cell lines including HCT116 (human colon carcinoma), PC3 (prostate carcinoma), HL60 (promyelocytic leukemia), and SNB19 (astrocytoma) were screened by MTT-based assay. It is noteworthy that spiro compound 1c inhibited the four cell lines tested with the lowest IC50 values: 52.81 µM for HCT116, 74.40 µM for PC3, 101 µM for SNB19, and 49.72 µM for HL60.  相似文献   

8.
A new and efficient one-pot synthesis of polysubstituted pyrrole derivatives by three-component reaction of dialkyl acetylenedicarboxylates, triphenylphosphine, 2-aminothiazole or 2-aminobenzothiazole in the presence of arylglyoxals is described. The reactions were performed in dichloromethane at room temperature and neutral conditions and afforded good yields of products.  相似文献   

9.
A high-order multicomponent reaction involving a six-component reaction to obtain the novel linked 1,5-disubstituted tetrazole-1,2,3-triazole hybrids in low to moderate yield is described. This one-pot reaction is carried out under a cascade process consisting of three sequential reactions: Ugi-azide, bimolecular nucleophilic substitution (SN2), and copper-catalyzed alkyne–azide reaction (CuAAC), with high atom and step-economy due the formation of six new bonds (one C-C, four C-N, and one N-N). Thus, the protocol developed offers operational simplicity, mild reaction conditions, and structural diversity. Finally, to evaluate the antitumoral potential of the synthetized molecules, a proliferation study was performed in the breast cancer (BC) derived cell line MCF-7. The hybrid compounds showed several degrees of cell proliferation inhibition with a remarkable effect in those compounds with cyclohexane and halogens in their structures. These compounds represent potential drug candidates for breast cancer treatment. However, additionally assays are needed to elucidate their complete effect over the cellular hallmarks of cancer.  相似文献   

10.
Hybridization of steroids and other pharmacophores often modifies the bioactivity of the parent compounds, improving selectivity and side effect profile. In this study, estradiol and 3′-(un)substituted benzisoxazole moieties were combined into novel molecules by structural integration of their aromatic rings. Simple estrogen starting materials, such as estrone, estradiol and estradiol-3-methylether were used for the multistep transformations. Some of the heterocyclic derivatives were prepared from the estrane precursor by a formylation or Friedel–Crafts acylation—oximation—cyclization sequence, whereas others were obtained by a functional group interconversion strategy. The antiproliferative activities of the synthesized compounds were assessed on various human cervical, breast and prostate cancer cell lines (HeLa, MCF-7, PC3, DU-145) and non-cancerous MRC-5 fibroblast cells. Based on the primary cytotoxicity screens, the most effective cancer-selective compounds were selected, their IC50 values were determined and their apoptosis-inducing potential was evaluated by quantitative real-time PCR. Pharmacological studies revealed a strong structure–function relationship, where derivatives with a hydroxyl group on C-17 exhibited stronger anticancer activity compared to the 17-acetylated counterparts. The present study concludes that novel estradiol-benzisoxazole hybrids exert remarkable cancer cell-specific antiproliferative activity and trigger apoptosis in cancer cells.  相似文献   

11.
The adduct produced in the reaction between cyclohexyl isocyanide and dialkyl acetylenedicarboxylates was trapped by benzoyl hydrazones to afford highly functionalized ketenimines in good yields. The reaction is characterized by mild conditions, high selectivity, and tolerance to various functional groups.  相似文献   

12.
Astaxanthin (AST) is a type of ketone carotenoid having significant antioxidation and anticancer abilities. However, its application is limited due to its low stability and bioavailability. In our study, poly (lactic-co-glycolic acid) (PLGA)-encapsulated AST (AST@PLGA) nanoparticles were prepared by emulsion solvent evaporation method and then further processed by ultrasound with broccoli-derived extracellular vesicles (BEVs), thereby evolving as BEV-coated AST@PLGA nanoparticles (AST@PLGA@BEVs). The preparation process and methods were optimized by three factors and three levels of response surface method to increase drug loading (DL). After optimization, the DL was increased to 6.824%, and the size, polydispersity index, and zeta potential of AST@PLGA@BEVs reached 191.60 ± 2.23 nm, 0.166, and −15.85 ± 0.92 mV, respectively. Moreover, AST@PLGA@BEVs exhibited more notable anticancer activity than AST in vitro. Collectively, these results indicate that the method of loading AST in broccoli-derived EVs is feasible and has important significance for the further development and utilization of AST as a functional food.  相似文献   

13.
Breast cancer is the most common cancer in women, responsible for over half a million deaths in 2020. Almost 75% of FDA-approved drugs are mainly nitrogen- and sulfur-containing heterocyclic compounds, implying the importance of such compounds in drug discovery. Among heterocycles, thiazole-based heterocyclic compounds have demonstrated a broad range of pharmacological activities. In the present study, a novel set of 1,3-thiazole derivatives was designed and synthesized based on the coupling of acetophenone derivatives, and phenacyl bromide was substituted as a key reaction step. The activity of synthesized compounds was screened against the proliferation of two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all compounds exhibited a considerable antiproliferative activity toward the breast cancer cells as compared to staurosporine, with no significant cytotoxicity toward the epithelial cells. Among the synthesized compounds, compound 4 exhibited the most potent antiproliferative activity, with an IC50 of 5.73 and 12.15 µM toward MCF-7 and MDA-MB-231 cells, respectively, compared to staurosporine (IC50 = 6.77 and 7.03 µM, respectively). Exploring the mechanistic insights responsible for the antiproliferative activity of compound 4 revealed that compound 4 possesses a significant inhibitory activity toward the vascular endothelial growth factor receptor-2 (VEGFR-2) with (IC50 = 0.093 µM) compared to Sorafenib (IC50 = 0.059 µM). Further, compound 4 showed the ability to induce programmed cell death by triggering apoptosis and necrosis in MCF-7 cells and to induce cell cycle arrest on MCF-7 cells at the G1 stage while decreasing the cellular population in the G2/M phase. Finally, detailed in silico molecular docking studies affirmed that this class of compounds possesses a considerable binding affinity toward VEGFR2 proteins. Overall, these results indicate that compound 4 could be a promising lead compound for developing potent anti-breast cancer compounds.  相似文献   

14.
Dehydroabietic Acid (DHA, 1) derivatives are known for their antiproliferative properties, among others. In the context of this work, DHA was initially modified to two key intermediates bearing a C18 methyl ester, a phenol moiety at C12, and an acetyl or formyl group at C13 position. These derivatives allowed us to synthesize a series of DHA-chalcone hybrids, suitable for structure–activity relationship studies (SARS), following their condensation with a variety of aryl-aldehydes and methyl ketones. The antiproliferative evaluation of the synthesized DHA-chalcone hybrids against three breast cancer cell lines (the estrogen-dependent MCF-7 and the estrogen-independent MDA-MB-231 and Hs578T) showed that eight derivatives (33, 35, 37, 38, 39, 41, 43, 44) exhibit low micromolar activity levels (IC50 2.21–11.5 μΜ/MCF-7). For instance, some of them showed better activity compared to the commercial anticancer drug 5-FU against MCF-7 cells (33, 41, 43, 44) and against MDA-MB231 (33 and 41). Hybrid 38 is a promising lead compound for the treatment of MCF-7 breast cancer, exhibiting comparable activity to 5-FU and being 12.9 times less toxic (SI = 22.7). Thus, our findings suggest that DHA-chalcone hybrids are drug candidates worth pursuing for further development in the search for novel breast cancer therapies.  相似文献   

15.
VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR, and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly, compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell cycle at the G0–G1 phase and a total apoptosis increase from 3.05 to 19.82%—6.5-fold in comparison to the negative control. In addition, compound 8 caused significant increases in the expression levels of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level (3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and immunomodulatory effects.  相似文献   

16.
Based on the results of previous work, we designed and synthesized 1,3,4-thiadiazole derivatives. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and a normal cell line (fibroblasts). The results showed that all compounds displayed weak anticancer activity towards two breast cancer lines: an estrogen-dependent cell line (MCF-7) and an estrogen-independent cell line (MDA-MB-231). The compound most active towards MCF-7 breast cancer cells was SCT-4, which decreased DNA biosynthesis to 70% ± 3 at 100 µM. The mechanism of the anticancer action of 1,3,4-thiadiazole was also investigated. We choose a set of the most investigated proteins, which are attractive anticancer targets. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds but the most likely mechanism of action for the new compounds is connected with the activity of caspase 8.  相似文献   

17.
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.  相似文献   

18.
常明琴  奚倩  纪铭  黄文远  高婷妤  李阳 《化学通报》2021,84(2):154-161,171
本文通过3-溴甲基喹喔啉-2-羧酸乙酯与芳胺或脂肪胺在回流的乙醇中经一步反应简便而有效合成了一系列结构新颖的基于喹喔啉结构的异吲哚啉酮类化合物.采用MTT法初步评价了目标化合物对肺癌细胞株A549和直肠癌细胞株HT29的体外增殖抑制活性.结果 表明,含有卤素(F,Cl,Br,I)取代的化合物7h~7k对这两个细胞株表现...  相似文献   

19.
Starting with fluorinated benzylamines, a series of 2-unsubstituted imidazole N-oxides was prepared and subsequently deoxygenated in order to prepare the corresponding imidazoles. The latter were treated with benzyl halides yielding imidazolium salts, which are considered fluorinated analogues of naturally occurring imidazolium alkaloids known as lepidilines A and C. A second series of oxa-lepidiline analogues was obtained by O-benzylation of the initially synthetized imidazole N-oxides. Both series of imidazolium salts were tested as anticancer and antiviral agents. The obtained results demonstrated that the introduction of a fluorine atom, fluoroalkyl or fluoroalkoxy substituents (F, CF3 or OCF3) amplifies cytotoxic properties, whereas the cytotoxicity of some fluorinated lepidilines is promising in the context of drug discovery. All studied compounds revealed a lack of antiviral activity against the investigated viruses in the nontoxic concentrations.  相似文献   

20.
The present paper is devoted to the search for drug-like molecules with anticancer properties using the thiazolo[3,2-b][1,2,4]triazole-6-one scaffold. A series of 24 novel thiazolo-[3,2-b][1,2,4]triazole-6-ones with 5-aryl(heteryl)idene- and 5-aminomethylidene-moieties has been synthesized employing three-component and three-stage synthetic protocols. A mixture of Z/E-isomers was obtained in solution for the synthesized 5-aminomethylidene-thiazolo[3,2-b]-[1,2,4]triazole-6-ones. The compounds have been studied for their antitumor activity in the NCI 60 lines screen. Some compounds present excellent anticancer properties at 10 μM. Derivatives 2h and 2i were the most active against cancer cell lines without causing toxicity to normal somatic (HEK293) cells. A preliminary SAR study had been performed for the synthesized compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号