首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cubature formulas for evaluating the double integral of a two-variable function with boundary-layer components are constructed and studied. Because of the boundary-layer components, the cubature formulas based on Newton-Cotes formulas become considerably less accurate. Analogues of the trapezoidal and Simpson rules that are exact for the boundary-layer components are constructed. Error estimates for the constructed formulas are derived that are uniform in the gradients of the integrand in the boundary layers.  相似文献   

2.
A general method for obtaining rational approximations to formal power series is defined and studied. This method is based on approximate quadrature formulas. Newton-Cotes and Gauss quadrature methods are used. It is shown that Padé approximants and the ε-algorithm are related to Gaussian formulas while linear summation processes are related to Newton-Cotes formulas. An example is exhibited which shows that Padé approximation is not always optimal. An application to et is studied and a method for Laplace transform inversion is proposed.  相似文献   

3.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

4.
In this paper, we first introduce a modification of linear multistep methods, which contain, in particular, the modified Adams-Bashforth methods for solving initial-value problems. The improved method is achieved by applying the Hermite quadrature rule instead of the Newton-Cotes quadrature formulas with equidistant nodes. The related coefficients of the method are then represented explicitly, the local error is given, and the order of the method is determined. If a numerical method is consistent and stable, then it is necessarily convergent. Moreover, a weighted type of the new method is introduced and proposed for solving a special case of the Cauchy problem for singular differential equations. Finally, several numerical examples and graphical representations are also given and compared.  相似文献   

5.
A family of one-step multiderivative methods based on Padé approximants to the exponential function is developed. The methods are extrapolated and analysed for use inPECE mode.Error constants, stability intervals and stability regions are given in two associated Technical Reports.Comparisons are made with well-known linear multi-step combinations and combinations using high accuracy Newton-Cotes quadrature formulas as correctors.  相似文献   

6.
Summary The Gregory rule is a well-known example in numerical quadrature of a trapezoidal rule with endpoint corrections of a given order. In the literature, the methods of constructing the Gregory rule have, in contrast to Newton-Cotes quadrature,not been based on the integration of an interpolant. In this paper, after first characterizing an even-order Gregory interpolant by means of a generalized Lagrange interpolation operator, we proceed to explicitly construct such an interpolant by employing results from nodal spline interpolation, as established in recent work by the author and C.H. Rohwer. Nonoptimal order error estimates for the Gregory rule of even order are then easily obtained.  相似文献   

7.
Summary Ralston's quadrature achieves higher accuracy in composite rules than analogous Newton-Cotes or Gaussian formulas. His rules are analyzed, computable expressions for the weights and knots are given, and a more suitable form of the remainder is derived.  相似文献   

8.
A numerical method for computing the potential flow past a lattice of airfoils is described. The problem is reduced to a linear integrodifferential equation on the lattice contour, which is then approximated by a linear system of equations with the help of specially derived quadrature formulas. The quadrature formulas exhibit exponential convergence in the number of points on an airfoil and have a simple analytical form. Due to its fast convergence and high accuracy, the method can be used to directly optimize the airfoils as based on any given integral characteristics. The shear stress distribution and the separation points are determined from the velocity distribution at the airfoil boundary calculated by solving the boundary layer equations. The method proposed is free of laborious grid generation procedures and does not involve difficulties associated with numerical viscosity at high Reynolds numbers.  相似文献   

9.
Padé-type approximation is the rational function analogue of Taylor’s polynomial approximation to a power series. A general method for obtaining Padé-type approximants to Fourier series expansions of harmonic functions is defined. This method is based on the Newton-Cotes and Gauss quadrature formulas. Several concrete examples are given and the convergence behavior of a sequence of such approximants is studied. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
In the average quadrature formulas the values of a given functionat given points are replaced by its averages over some distinctintervals. If all the intervals are of the same length, thequadrature formulas of interpolatory type and in particular,of Newton-Cotes type were constructed in Omladi (1978). Here,we construct average quadrature formulas of Gauss type for intervalsof the same length. The middle points of the intervals are zerosof polynomials, orthogonal in a technical sense.  相似文献   

11.
We define quadrature formulas for integrals with weight functionsby applying a given approximation method locally. This allowsthe generalisation of different quadrature formulas, e.g., thecompound Newton-Cotes formulas, Gauss summation formulas, orGregory's formulas, to the case of weighted integrals, as wellas to construct new quadrature formulas, and to derive errorestimates for all these quadrature formulas. The estimates consideredhere are mainly of the form |R[f]|c||f(r)||, provided the underlyingapproximation method is exact for polynomials of degree <r(R[f] is the quadrature error). Explicit, asymptotically sharperror estimates are obtained for arbitrary integrable weightfunctions. Further, estimates are obtained for the case thatthe quadrature error is of higher order than the approximationerror.  相似文献   

12.
Some mathematical models of applied problems lead to the need of solving boundary value problems with a fractional power of an elliptic operator. In a number of works, approximations of such a nonlocal operator are constructed on the basis of an integral representation with a singular integrand. In the present article, new integral representations are proposed for operators with fractional powers. Approximations are based on the classical quadrature formulas. The results of numerical experiments on the accuracy of quadrature formulas are presented. The proposed approximations are used for numerical solving a model two‐dimensional boundary value problem for fractional diffusion.  相似文献   

13.
We consider the general (composite) Newton-Cotes method for the computation of Cauchy principal value integrals and focus on its pointwise superconvergence phenomenon, which means that the rate of convergence of the Newton-Cotes quadrature rule is higher than what is globally possible when the singular point coincides with some a priori known point. The necessary and sufficient conditions satisfied by the superconvergence point are given. Moreover, the superconvergence estimate is obtained and the properties of the superconvergence points are investigated. Finally, some numerical examples are provided to validate the theoretical results.  相似文献   

14.
基于被积函数在n次第一类和第二类Chebyshev多项式的零点处的差商,该本构造了两种Gauss型求积公式. 这些求积公式包含了某些已知结果作为特例.更重要的是这些新结果与Gauss-Turan求积公式有密切的联系.  相似文献   

15.
A family of quadrature rules for integration over tetrahedral volumes is developed. The underlying structure of the rules is based on the cubic close-packed (CCP) lattice arrangement using 1, 4, 10, 20, 35, and 56 quadrature points. The rules are characterized by rapid convergence, positive weights, and symmetry. Each rule is an optimal approximation in the sense that lower-order terms have zero contribution to the truncation error and the leading-order error term is minimized. Quadrature formulas up to order 9 are presented with relevant numerical examples.  相似文献   

16.
A class of methods for solving the initial value problem for ordinary differential equations is studied. We developr-block implicit one-step methods which compute a block ofr new values simultaneously with each step of application. These methods are examined for the property ofA-stability. A sub-class of formulas is derived which is related to Newton-Cotes quadrature and it is shown that for block sizesr=1,2,..., 8 these methods areA-stable while those forr=9,10 are not. We constructA-stable formulas having arbitrarily high orders of accuracy, even stiffly (strongly)A-stable formulas.  相似文献   

17.
Newton-Cotes quadrature rules are based on polynomial interpolation in a set of equidistant points. They are very useful in applications where sampled function values are only available on a regular grid. Yet, these rules rapidly become unstable for high orders. In this paper we review two techniques to construct stable high-order quadrature rules using equidistant quadrature points. The stability follows from the fact that all coefficients are positive. This result can be achieved by allowing the number of quadrature points to be larger than the polynomial order of accuracy. The computed approximations then implicitly correspond to the integral of a least squares approximation of the integrand. We show how the underlying discrete least squares approximation can be optimised for the purpose of numerical integration.  相似文献   

18.
Quadrature formulas for one-variable functions with a boundary-layer component are constructed and studied. It is assumed that the integrand can be represented as the sum of a regular and a boundary-layer component, the latter having high gradients that reduce the accuracy of classical quadrature formulas, such as the trapezoidal and Simpson rules. The formulas are modified so that their error is independent of the gradients of the boundary-layer component. Results of numerical experiments are presented.  相似文献   

19.
We consider quadrature formulas defined by piecewise polynomial interpolation at equidistant nodes, admitting the nodes of adjacent polynomials to overlap, which generalizes the interpolation scheme of the compound Newton-Cotes quadrature formulas. The error constantse ,n in the estimate
  相似文献   

20.
Classical interpolatory or Gaussian quadrature formulas are exact on sets of polynomials. The Szegő quadrature formulas are the analogs for quadrature on the complex unit circle. Here the formulas are exact on sets of Laurent polynomials. In this paper we consider generalizations of these ideas, where the (Laurent) polynomials are replaced by rational functions that have prescribed poles. These quadrature formulas are closely related to certain multipoint rational approximants of Cauchy or Riesz–Herglotz transforms of a (positive or general complex) measure. We consider the construction and properties of these approximants and the corresponding quadrature formulas as well as the convergence and rate of convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号