首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microwave-assisted self-assembled ZnS nanoballs   总被引:2,自引:0,他引:2  
Self-assembled zinc sulfide nanoballs were prepared in saturated aqueous solutions via a microwave-assisted route. Zinc acetate and thioacetamide were selected as zinc source and sulfur source, respectively. Powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectra, Fourier transform infrared and Thermogravimetric analysis were used to characterize the as-prepared products and the optical properties was studied by diffuse reflection spectra and photoluminescence spectra. Zinc sulfate and zinc nitrite can also used to prepare ZnS nanoparticles instead of nanoballs. The mechanism for the assembly of ZnS nanoballs was also discussed.  相似文献   

2.
CoO nanowires with diameters of 50_80 nm, and lengths of up to more than 5 μm have been successfully synthesized by a simple environmentally friendly molten salt route, in which the precursor CoCO3 nanoparticles are decomposed to form high-purity CoO nanowires in NaCl flux. The structure features and morphology of the as-prepared CoO nanowires were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and selected area electron diffraction (SAED). The chemical composition and oxidation state of the prepared nanowires were systemically studied by X-ray photoelectron spectra (XPS) and laser Raman spectroscopy. The results indicated that the as-prepared CoO nanowires were composed of pure cubic CoO phase. The growth mechanism of the synthesized nanowires was also discussed in detail based on the experimental results.  相似文献   

3.
Co nanowires with a preferred orientation were fabricated by direct current electrodeposition into the pores of porous anodic alumina membrane, and the structure of Co nanowires was studied by X-ray diffraction and high-resolution transmission electron microscopy with selected-area electron diffraction. It is found that the crystal structure of Co nanowires lies on the deposition potential. When electrodeposition is performed far from equilibrium conditions, i.e., at a high potential, face-centered cubic Co nanowires are deposited, while hexagonal close packing Co nanowires are formed at the low potential. The experimental results indicate that the orientation of the nanowires has effects on the coercivity for both hexagonal close packing (hcp) and face-centered cubic (fcc) Co.  相似文献   

4.
BaWO4 crystals with different morphologies, such as nanosheets, nanobelts, flower-like, quadrangled plates and sheaves of dendrite, have been successfully synthesized via PVP as templates. Our result shows that reaction parameters, such as the concentration of PVP aqueous solutions, pH value of the starting solution and molar ratio of [Ba2+]/[WO42−] played important roles in the formation of BaWO4 crystal with different morphologies. It is obviously different between microwave irradiation heating and oil bath heating. The products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and electron diffraction.  相似文献   

5.
Single phase Mn (2.5 at%) doped ZnO nanocrystalline samples were synthesized by reverse micelle method as characterized by Rietveld refinement analysis of X-ray diffraction data, high resolution transmission electron microscopy and selected area electron diffraction analyses. The X-ray photoelectron spectroscopy and electron paramagnetic resonance (EPR) studies indicated that manganese exist as Mn2+ in ZnO lattice. DC magnetization measurements as a function of field and temperature, of 2.5 at% Mn doped ZnO nanoparticles annealed at 675 K, showed room temperature ferromagnetism (RTF). This observation is further confirmed by the EPR spectrum of the sample, which shows a distinct ferromagnetic resonance signal at room temperature. These results indicate that the observed RTF in Mn-doped ZnO may be attributed to the substitutional incorporation of Mn at Zn sites.  相似文献   

6.
Without the use of any extra surfactant or template, γ-MnOOH single crystalline nanowires were synthesized directly through the hydrothermal reaction between KMnO4 and toluene in distilled water at 180 °C for 24 h; and β-MnO2 single crystalline nanowires could be obtained just by calcination of the γ-MnOOH nanowires in air at 280 °C for 5 h. The as-prepared γ-MnOOH and β-MnO2 nanowires were characterized by X-ray powder diffraction, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, scanning electron microscope, transmission electron microscope, high-resolution transmission electron microscope and selected area electron diffraction.  相似文献   

7.
A solvothermal route has been developed to synthesize K2V3O8 nanorods via the reduction of V2O5 using ethanol as the reducing agent as well as the solvent at 200°C. X-ray diffraction and selected area electron diffraction analysis revealed that the as-synthesized products are of tetragonal structure K2V3O8. Transmission electron spectroscopy image showed that the obtained K2V3O8 comprises rod-like nanocrystallites. The formation mechanism of K2V3O8 was studied.  相似文献   

8.
Cadmium sulfide (CdS) nanocrystals were successfully prepared in inverse microemulsion under γ-irradiation at room temperature. Their shape can be controlled by changing the surfactant concentrations and the addition of hydroxyethyl cellulose (HEC) as the template. CdS nanorods were successfully obtained under γ-irradiation using HEC as the template, which was confirmed by the observation of transmission electron microscopy (TEM). Without the addition of HEC, spherical CdS crystals were formed. X-ray powder diffraction (XRD) pattern and electron diffraction (ED) analysis showed the hexagonal lattice of CdS in the nanorods. Additionally, the optical properties of CdS nanorods were characterized by ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy.  相似文献   

9.
A convenient microwave-assisted process has been applied to prepare stellar Cu2O crystals. The products were characterized via X-ray diffraction pattern (XRD), transmission electron microscopy images (TEM) and UV-VIS absorption spectrum. The results showed that the as-prepared Cu2O stellar crystals have regular shape and uniform size distribution. The influences of microwave irradiation and the concentration of starting agents on the morphology of the products were also discussed.  相似文献   

10.
Anorthic SrHPO4 nanobelts and hexagonal Sr10O(PO4)6 nanorods were obtained by a simple hydrothermal method without adding any surfactant as template. The as-synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). TEM and HRTEM observations of the products revealed that the as-prepared SrHPO4 nanobelts and Sr10O(PO4)6 hexagonal nanorods are single crystals with their preferential growth direction along the normal of (1 0 0) and (0 0 1) planes, respectively.  相似文献   

11.
X.M. Liu  Y.C. Zhou   《Journal of Crystal Growth》2004,270(3-4):527-534
Large quantities of ZnO nanorods have been synthesized by the seed-mediated method in the presence of polyethylene glycol at 90 °C. The products are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The as-grown ZnO nanorods are uniform with a diameter of 40–70 nm and length about 2 μm. The nanorods grew along the [0 0 1] direction. Possible roles of ZnO seeds and polymer in the growth of ZnO nanorods are also discussed.  相似文献   

12.
A solid-state metathesis approach for the synthesis of hydrated MnV2O6·xH2O (x=2, 4) materials driven by mechanochemical activation energy has been demonstrated. The metathesis pathway of forming the desired product is confirmed by the presence of high lattice energy by-product such as NaCl. The structural, optical, and chemical properties of the synthesized materials are examined by powder X-ray diffraction, X-ray photoelectron spectroscopy, thermo gravimetric analysis, scanning electron microscopy, transmission electron microscopy, and diffused reflectance measurements in the UV–vis range. The valence state of Mn and V was determined to be +2 and +5, respectively, for the title compounds and the bandgap values determined showed these materials are likely to be semiconductors.  相似文献   

13.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

14.
A simple efficient thermal evaporation technique, oxidizing zinc foils and in situ evaporating at 700 °C in air without the presence of catalyst and carrier gas, was developed to control the growth of the different morphologies of ZnO nano- and micro-structures. Porous membrane, nanowires (or nanorods), nanobelts, nanoneedles, and tetrapods have been achieved through tuning the heating rates in a tube furnace. The morphologies and microstructures of samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Our deterministic growth of different shapes of ZnO crystals offers ideal model system to study the physical properties.  相似文献   

15.
Highly ordered hexagonal prism microstructures of copper sulfide (CuS) by assembling nano-flakes have been synthesized with high yield via a facile one-step route. We synthesized CuS microstructures using low cost beginning materials CuSO4·5H2O and Na2S2O3·5H2O under lower reaction temperature (60 °C). Hexamethylinetetramin (C6H12N4, HMT) was introduced into the reaction system as a capped agent. The influence of reaction time and capping agent (HMT) on the final structure of products was studied systematically. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopes (EDS), and transmission electron microscopy (TEM). The possible mechanism for the formation of the interesting highly ordered hexagonal prism microstructures CuS was also proposed.  相似文献   

16.
Polycrystalline Bi2Te3 nanowires were prepared by a hydrothermal method that involved inducing the nucleation of Bi atoms reduced from BiCl3 on the surface of Te nanowires, which served as sacrificial templates. A Bi–Te alloy is formed by the interdiffusion of Bi and Te atoms at the boundary between the two metals. The Bi2Te3 nanowires synthesized in this study had a length of 3–5 μm, which is the same length as that of the Te nanowires, and a diameter of 300–500 nm, which is greater than that of the Te nanowires. The experimental results indicated that volume expansion of the Bi2Te3 nanowires was a result of the interdiffusion of Bi and Te atoms when Bi was alloyed on the surface of the Te nanowires. The morphologies of Bi2Te3 are strongly dependent on the reaction conditions such as the temperature and the type and concentration of the reducing agent. The morphologies, crystalline structure and physical properties of the product were analyzed by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS).  相似文献   

17.
Single crystalline Ce-doped ZnO hexagonal nanoplatelets are successfully synthesized. Zinc acetate, cerium nitrate, potassium hydroxide and poly vinyl alcohol were mixed together and transferred to a 100 mL Teflon-lined stainless steel autoclave kept at 150 °C for 24 h. The obtained precipitant is calcined at 600 °C. The morphology and microstructure were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. The investigation confirmed that the products were of the wurtzite structure of ZnO. The doped hexagonal nanoplatelets have edge length 25 nm and thickness 11 nm. EDX result showed that the amount of Ce in the product is about 15%. Photoluminescence of these doped hexagonal nanoplatelets exhibits a blue shift and weak ultraviolet (UV) emission peak, compared with pure ZnO, which may be induced by Ce-doping. The growth mechanism of the doped hexagonal nanoplatelets was also discussed.  相似文献   

18.
NaYF4:Yb,Er micro/nanocrystals with different sizes and morphologies such as nanospheres, short flexural nanorods, and half opened microtubes, were synthesized in reverse microemulsion under solvothermal condition using the quaternary reverse microemulsion system, CTAB/1-butanol/cyclohexane/aqueous solution. The X-ray diffraction analysis confirmed that cubic phase NaYF4:Yb,Er can completely transform to hexagonal phase with increasing reaction time. The scanning electron microscope and transmission electron microscope images revealed that the morphology of the product can be tailored by varying the reaction time. A possible crystalline growth process of the NaYF4:Yb,Er micro/nanocrystals was discussed. The obtained half opened microtubes exhibited an intense green upconversion luminescence, which may be attractive in novel optoelectronic devices.  相似文献   

19.
Large-scale SiC nanocables were synthesized on a Ni(NO3)2-catalyzed Si substrate by using a simple and cheap method based on thermal decomposition of methanol. Based on X-ray diffraction and high-magnification transmission electron microscopy, the as-grown nanocables consisted of crystalline SiC cores and amorphous SiO2 shells. The diameters of SiC cores were 5.7–10 nm and the thicknesses of SiO2 shells were 9–20 nm. Dividing of nanocables was observed and its origin was investigated. An asymmetric feature of SiC TO band with a shoulder at the high-frequency side was attributed to the contribution of SiC TO mode. The nanocables displayed strong violet–blue emission. A possible growth mechanism was proposed.  相似文献   

20.
We report on the epitaxial growth of the intrinsic ferromagnetic semiconductor GdN on Si (1 1 1) substrates buffered by a thick AlN layer, forming a heteroepitaxial system with promise for spintronics. Growth is achieved by depositing Gd in the presence of unactivated N2 gas, demonstrating a reactivity at the surface that is sufficient to grow near stoichiometric GdN only when the N2:Gd flux ratio is at least 100. Reflection high-energy electron diffraction and X-ray diffraction show fully (1 1 1)-oriented epitaxial GdN films. The epitaxial quality of the films is assessed by Rutherford backscattering spectroscopy carried out in random and channelling conditions. Magnetic measurements exhibit a Curie temperature at 65 K and saturation magnetisation of 7 μB/Gd in agreement with previous bulk and thin-film data. Hall effect and resistance data establish that the films are heavily doped semiconductors, suggesting that up to 1% of the N sites are vacant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号