首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Using near-field scanning optical microscopy and ultrafast laser spectroscopy, we study the linear optical properties of subwavelength nanoslit and nanohole arrays in metal films, which are prototype structures for novel plasmonic metamaterials. Near-field microscopy provides direct evidence for surface plasmon polariton (SPP) excitation and allows for spatial imaging of the corresponding SPP modes. By employing spectral interferometry with ultrashort 11-fs light pulses, we directly reconstruct the temporal structure of the electric field of these pulses as they are transmitted through the metallic nanostructures. The analysis of these data allows for a quantitative extraction of the plasmonic band structure and the radiative damping of the corresponding SPP modes. Clear evidence for plasmonic band gap formation is given. Our results reveal that the coherent coupling between different SPP modes can result in a pronounced suppression of radiative SPP damping, increasing the SPP lifetime from 30 fs to more than 200 fs. These findings are relevant for optimizing and manipulating the optical properties of novel nano-plasmonic devices. PACS 42.70.Qs; 07.79.Fc; 42.25.-p  相似文献   

2.
Coupling mode-based nanophotonic U-shaped circuit devices is proposed. Furthermore, the coupling of TM mode between adjacent air channels on metal and propagation of surface plasmon polariton (SPP) waves was demonstrated. Different output intensities were derived by modifying the U-shaped air channel width, and the binary logical value “1” or “0” is obtained after definition of threshold. A spacial coupling mode theory is used to explain the computational simulation results. The theory and the numerical results are well fitted to each other. The structure can be used to obtain all four binary arrays applying to the highly integrated optical circuit. PACS 02.60.Cb; 42.25.Fx; 42.25.Bs  相似文献   

3.
We introduce a modified surface plasmonic waveguide with an arc slot. The dependences of distribution of energy flux density, effective index, propagation length and mode area of the symmetric mode supported by this waveguide on geometrical parameters and working wavelength are analysed by using the finite-difference frequency-domain (FDFD) method. Results show that the energy flux density distributes mainly in four corners which are formed by two arcs, and the closer to the corners it is, the stronger the energy flux density will be. The effective index, the propagation length and the mode area are influenced by geometrical parameters, including the width, the thickness and the arc radius of the surface plasmonic waveguide, as well as the working wavelength. It has been shown that the surface plasmonic waveguide with an arc slot has better propagation properties than the surface plasmonic waveguide with a straight slot. This work may be helpful for applying the slot surface plasmonic waveguide to integrated photonics.  相似文献   

4.
用有限差分法计算了由金属棒分别按方形和三角形晶格分布的二维光子晶体的色散曲线, 得出了带隙图.计算结果表明: 对于三角形晶格, 当金属棒半径和棒间距比值小于0.2时, 由该种光子晶体构成的微波加速结构可约束主模、抑制高次模; 用Microwave Studio软件模拟计算了三角形晶格分布的二维光子晶体加速结构, 研究了新加速结构的RF参数与结构尺寸的关系, 优化出一组RF频率为9.37GHz时此种加速腔的结构尺寸, 计算还表明该种新加速结构具有较高的分路阻抗和品质因数.  相似文献   

5.
Spectral dispersion of light on a finite-size surface plasmon polaritonic (SPP) crystal has been studied. The angular wavelength separation of one or more orders of magnitude higher than in other state-of-the-art wavelength-splitting devices available to date has been demonstrated. The two-stage process is responsible for the dispersion value, which involves conversion of the incident light into SPP Bloch modes of a nanostructure followed by the SPP Bloch waves refraction at the SPP crystal boundary. The high spectral dispersion achievable in plasmonic devices may be useful for integrated high-resolution spectroscopy in nanophotonic, optical communication and lab-on-a-chip applications.  相似文献   

6.
Kwon MS 《Optics letters》2010,35(22):3835-3837
This Letter theoretically proposes and investigates an integrated plasmonic sensor that is based on a grating-assisted coupling between a surface plasmon polariton (SPP) and a dielectric waveguide (DW) mode. It consists of a glass slide with a gold film for the propagation of an SPP and a separate DW with a long-period grating. For sensing, the two parts are temporarily combined. After sensing, the former is replaceable, and so the sensor has disposability. The design procedure and analysis method for the sensor are explained. The designed sensor is shown to be very compact. Its characteristics of sensing a change of the refractive index of liquid are analyzed and discussed.  相似文献   

7.
邓红梅  黄磊  李静  陆叶  李传起 《物理学报》2017,66(14):145201-145201
本文设计并数值研究了一种石墨烯加载的不对称金属纳米天线对结构.利用石墨烯费米能级的动态调控特性,实现了电控表面等离激元的单向传输.类似于传统的三明治型纳米天线结构,设计的不对称金属纳米天线对结构可以等效为两个共振的磁偶极子,由于磁偶极子辐射电磁波的干涉,将导致单向传输效应.通过计算腔中的电场分布,发现石墨烯的调谐能力与石墨烯区域的电场强度成正比关系.以上现象都可以通过等效电路模型进行理论解释.此外,该结构具有小尺寸、高效率、宽带宽和易于光电集成等优点,在未来的光子集成与光电子学领域将具有重要的应用.  相似文献   

8.
为了进一步明确MIM (Metal-insulator-metal)波导结构的SPP (Surface plasmon polariton)模式特性,建立了MIM结构的SPP模式关系、激发系数和反射系数的理论模型。仿真数值计算结果表明:较大的介质厚度的TM基态模式衰减超过了振荡模式衰减,与传统的介质波导明显不同;TE模式表现为失真的介质光波导模式特性,其传播距离要远大于TM0;MIM结构中腔的Q值随着长度增加而增大,表明了SPP反射受限;腔的品质因数改变与端面关系密切;MIM波导可以在具有更大Q值下确保光波更好地耦合成需要的SPP模式。  相似文献   

9.
卢佳慧  王光辉 《中国物理 B》2016,25(11):117804-117804
We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton(SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding.With Maxwell's equations and Maxwell stress tensor,we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides.The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters.Importantly,an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation.These special optical properties will open the door for potential optomechanical applications,such as optical tweezers and actuators.  相似文献   

10.
The tunable propagation properties of 3D Dirac semimetal (DSM)-supported dielectric-loaded surface plasmons structures have been investigated in the THz regime, including the influences of the Fermi level of 3D DSM layer, the fiber shape and operation frequencies. The results indicate that the shape of dielectric fiber affects the hybrid mode significantly, on the condition that if ax (the semi-minor axis length of the dielectric semi-ellipse) is relatively small, the fiber shows good mode confinement and low loss simultaneously, and the figure of merit reaches more than 200. The propagation property can be manipulated in a wide range by changing the Fermi level of 3D DSM, e.g. if the Fermi level varies in the range of 0.05 eV–0.15 eV, the propagation length changes in the range of 9.073×103–2.715×104 μm, and the corresponding modulation depth is 66.5%. These results are very helpful to understand the tunable mechanisms of the 3D DSM plasmonic devices, such as switchers, modulators, and sensors.  相似文献   

11.
王本立  梁涵  李家方 《中国物理 B》2017,26(11):114103-114103
The propagation length of surface plasmon polaritons(SPPs) is intrinsically limited by the metallic ohmic loss that is enhanced by the strongly confined electromagnetic field. In this paper, we propose a new class of hybrid plasmonic waveguides(HPWs) that can support long-range SPP propagation while keeping subwavelength optical field confinement. It is shown that the coupling between the waveguides can be well tuned by simply varying the structural parameters. Compared with conventional HPWs, a larger propagation length as well as a better optical field confinement can be simultaneously realized. The proposed structure with better optical performance can be useful for future photonic device design and optical integration research.  相似文献   

12.
In this paper, we propose a plasmonic coupler which is composed of a nanoslit with a bump. The slit is used to generate surface plasmon polariton (SPP), and the bump is employed as a SPP reflector. It is found that the phase difference between the SPP propagating the opposite direction to the bump and the one reflected by the bump can be periodically adjusted by the distance between the center of slit and the bump. When the constructive interference between the two SPPs occurs, the proposed structure can be regarded as a undirectional plasmonic coupler. Moreover, we also find that the propagation of the interfering SPPs is influenced by the width and length of bump. It is expected that our results may be utilized to control the electromagnetic wave in subwavelength optics.  相似文献   

13.
The spatiotemporal focusing of surface plasmon polariton (SPP) wave packets (WPs) by planar plasmonic‐lens coupling structures is described using combined femtosecond interferometric time‐resolved photoemission electron microscopy (ITR‐PEEM) imaging and model simulations. The focusing properties of lens structures inscribed lithographically into Ag films depend on the angle of incidence of the excitation field. Severe aberrations are introduced by the phase delay in the interaction of obliquely incident plane waves with the commonly employed circular arc‐shaped lens structures. It is shown that the aberration can be corrected by accounting for propagation delays caused by the incidence angle‐dependent retardation of the optical field‐lens structure interaction. The focusing of SPP‐WPs in both space and time is demonstrated with aberration corrected lens structures.  相似文献   

14.
We report on our recent theoretical and experimental studies of three-dimensional (3D) photonic lattice structures which are established in a bulk nonlinear crystal by employing different optical induction techniques. These 3D photonic lattices bring about new opportunities for controlling the flow of light via coupling engineering originated from the lattice modulation along the beam propagation direction. By fine tuning the lattice parameters, we observe a host of unusual behaviors of beam propagation in such reconfigurable 3D lattices, including enhanced discrete diffraction, light tunneling inhibition—better known as coherent destruction of tunneling (CDT), anomalous diffraction, negative refraction, as well as CDT-based image transmission. In addition, we propose and demonstrate a new way of creating 3D ionic-type photonic lattices by controlled Talbot effect.  相似文献   

15.
Eigenwave analysis is given to an infinite array of stub-loaded rectangular waveguides using the method of moments (Galerkin’s scheme), with the basis functions explicitly satisfying the rectangular-edge condition. The numerical data on propagation constants and field structure for different modes are presented as a function of geometrical parameters and frequency. The emphasis is on the groove dominant wave. In particular, its radiation loss is shown to be effectively controlled by adding some asymmetry to the groove geometry. Wave mode coupling effects have been revealed between the groove dominant wave and the planar waveguide section waves. The so-called Morse critical points of the dispersion equation are identified within the coupling domains.  相似文献   

16.
李梦君  方晖  李小明  袁小聪 《物理学报》2016,65(5):57302-057302
针对D3h和D4h对称构型金属纳米多颗粒集合即等离激元超分子表面等离激元共振光谱的子集合分解及其相对应的Fano共振光谱低谷的产生机理, 本文运用群论的方法做出了详细的分析研究. 运用与群论中求解分子简正振动模式类似的方法, 推导证实了在线偏振光入射时, Dnh环形多颗粒只有2个电偶极表面等离激元共振模式, 增加中心颗粒会使模式增加1个. 对D3h和D4h等离激元超分子的表面等离激元共振模式进行不可约表示基向量正交分解分析表明, Fano共振光谱低谷是由于两个起主要作用的相邻模式包含有共同的正交基向量, 并形成相消干涉而产生. 这进一步验证了Fano共振光谱低谷的起源除传统观点(即源自于宽频超辐射亮模式和窄频低辐射暗模式之间的耦合)之外的另一种解释视角.  相似文献   

17.
We report the first observation of subradiance in plasmonic nanocrystals. Amplitude- and phase-resolved ultrafast transmission experiments directly reveal the coherent coupling between surface plasmon polaritons (SPPs) induced by periodic variations in the dielectric function. This interaction results in the formation of plasmonic band gaps and coupled SPP eigenmodes with different symmetries, as directly shown by near-field imaging. In antisymmetric modes, radiative SPP damping is strongly suppressed, increasing the SPP lifetime from 30 fs to more than 200 fs. The findings are analyzed within a coupled resonance model.  相似文献   

18.
19.
In this paper, photonic crystal (PhC) based on two dimensional (2D) square and hexagonal lattice periodic arrays of Silicon Carbide (SiC) rods in air structure have been investigated using plane wave expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength (λ = 1.55 μm) by varying the radius of the rods and lattice constant. The result obtained shows that a photonic band gap (PBG) exists for TE-mode propagation. First, the effect of temperature on the width of the photonic band gap in the 2D SiC PhC structure has been investigated and compared with Silicon (Si) PhC. Further, a cavity has been created in the proposed SiC PhC and carried out temperature resiliency study of the defect modes. The dispersion relation for the TE mode of a point defect A1 cavity for both SiC and Si PhC has been plotted. Quality factor (Q) for both these structures have been calculated using finite difference time domain (FDTD) method and found a maximum Q value of 224 for SiC and 213 for Si PhC cavity structures. These analyses are important for fabricating novel PhC cavity designs that may find application in temperature resilient devices.  相似文献   

20.
The silicon-based three-dimensional hybrid long-range plasmonic waveguide not only supports long-range propagation distance (~mm) but also has an ultra-small modal area (~10?2 μm2) at 1.55 μm. Here, we propose a directional coupler for effective coupling from a dielectric slab-waveguide to the hybrid plasmonic waveguide on a silicon platform. Our simulation results show that the coupler is able to excite hybrid long-range plasmonic mode with short coupling length, low insertion loss, and high extinction ratio. With the arm separation of 0.3 μm, the coupling length can be made 5.2 % of the propagation length of the hybrid plasmonic waveguide, while the insertion loss and extinction ratio are ?0.12 and 22.4 dB, respectively. This coupler offers the potential applications in signal routing between the hybrid long-range plasmonic waveguide and dielectric waveguide in the photonic integrated circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号