首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of a nonviral gene delivery system to overcome extra- and intracellular barriers is a critical issue for the future clinical applications of gene therapy. In recent years much effort has been focused on the development of a variety of DNA carriers, and cationic liposomes have become the most common nonviral gene delivery system. One hundred and eighty novel cationic lipids with asymmetric acyl-cholesteryl hydrophobic tails were synthesized by parallel solid-phase chemistry. The liposomes were prepared and gel retardation assays were used to study the binding efficiency between the prepared liposome and the DNA. Transfection efficiencies of the lipids were evaluated against various mammalian cells, such as human embryonic kidney (HEK293), human cervical adenocarcinoma (HeLa), canine osteosarcoma (D17), colorectal adenocarcinoma (COLO 205), and human prostate adenocarcinoma (PC3) cells. The lipids with an acyl portion at the terminal part of the polyamine backbone exhibited higher transfection efficiency than those with the acyl portion as an internal part of the backbone. These compounds also showed higher transfection efficiency and lower cytotoxicity than the commercially available agents, Effectene, DOTAP, and DC-Chol.  相似文献   

2.
The synthesis of cationic lipo-thiophosphoramidates, a new family of cationic lipids designed for gene delivery, is reported herein. This new class of lipids is less polar than its oxygenated equivalent the lipo-phosphoramidates. Fluorescence anisotropy and FRET were used to determine the fluidity and fusogenicity of the lipo-phosphoramidates 3a-b and lipo-thiophosphoramidates 7a-b. The determination of both the size and the zeta potential of the nano-objects (liposomes and lipoplexes) and the determination of the DNA binding ability of the liposomes have completed the physico-chemical characterizations of the cationic lipids studied. Finally, the cationic lipids 3a-b and 7a-c have been evaluated as synthetic vectors for gene transfection into a variety of mammalian cell lines. The lipo-thiophosphoramidate 7a proved to be an efficient and low toxicity synthetic vector even when used at low lipid to DNA charge ratios.  相似文献   

3.
程义云 《高分子学报》2017,(8):1234-1245
阳离子高分子被广泛应用为非病毒类基因载体,但这类高分子材料的转染效率与细胞毒性之间通常存在"恶性"关联,即获得高转染效率时往往会伴随严重的细胞毒性.如何制备兼具高效、低毒特点的高分子载体是成功实施基因治疗的关键.含氟高分子是一类具有独特理化性质的高分子,能够在低电荷密度条件下与核酸形成稳定的复合物,从而实现高效、低毒的基因转染.含氟功能基团可帮助阳离子高分子改善复合物稳定性、细胞内吞、内涵体逃逸、胞内核酸释放等多个环节,从而赋予了含氟高分子在基因递送过程中的氟效应.该专论系统地总结了含氟高分子基因载体的研究,介绍了含氟高分子的基因递送性能、作用机理以及在基因治疗、基因编辑中的应用,并对含氟高分子载体的未来发展进行了展望.  相似文献   

4.
Investigation of DNA interactions with cationic lipids is of particular importance for the fabrication of biosensors and nanodevices. Furthermore, lipid/DNA complexes can be applied for direct delivery of DNA‐based biopharmaceuticals to damaged cells as non‐viral vectors. To obtain more effective and safer DNA vectors, the new cationic lipids 2‐tetradecylhexadecanoic acid‐{2‐[(2‐aminoethyl)amino]ethyl}amide (C I ) and 2‐tetradecylhexadecanoic acid‐2‐[bis(2‐aminoethyl)amino]ethylamide (C II ) were synthesized and characterized. The synthesis, physical–chemical properties and first transfection and toxicity experiments are reported. Special attention was focused on the capability of C I and C II to complex DNA at low and high subphase pH values. Langmuir monolayers at the air/water interface represent a well‐defined model system to study the lipid/DNA complexes. Interactions and ordering of DNA under Langmuir monolayers of the new cationic lipids were studied using film balance measurements, grazing incidence X‐ray diffraction (GIXD) and X‐ray reflectivity (XR). The results obtained demonstrate the ability of these cationic lipids to couple with DNA at low as well as at high pH value. Moreover, the observed DNA structuring seems not to depend on subphase pH conditions. An influence of the chemical structure of the lipid head group on the DNA binding ability was clearly observed. Both compounds show good transfection efficacy and low toxicity in the in vitro experiments indicating that lipids with such structures are promising candidates for successful gene delivery systems.  相似文献   

5.
《Comptes Rendus Chimie》2003,6(5-6):617-622
Cationic liposomes are good candidates as gene carriers in cell biology due to their ability to bind DNA through electrostatic interactions. These liposomes are used as non-viral delivery systems in the gene therapy of glioma. pH-dependency and transfection efficiency of seven novel lipids (MORF-1, MORF-2, MORF-3, PIPR-1, PIPR-2, MM54 and DC-Amy) were studied. Two of these molecules (PIPR-2 and MM54) show at specific charge ratios better transfection efficiency than that of some commercially available liposomes. To cite this article: C. Esposito et al., C. R. Chimie 6 (2003).  相似文献   

6.
In an effort to probe the importance of endosomal protonation in pH-sensitive, cationic, lipid-mediated, non-viral gene delivery, we have designed and synthesized a novel cholesterol-based, endosomal pH-sensitive, histidylated, cationic amphiphile (lipid 1), its less pH-sensitive counterpart with an electron-deficient, tosylated histidine head group (lipid 2) as well as a third new cholesterol-based, cationic lipid containing no histidine head group (lipid 3). For all the novel liposomes and lipoplexes, we evaluated hysicochemical characteristics, including lipid:DNA interactions, global surface charge, and sizes. As anticipated, lipid 2 showed lower efficacies than lipid 1 for the transfection of 293T7 cells with the cytoplasmic gene expression vector pT7Luc at lipid:DNA mole ratios of 3.6:1 and 1.8:1; both lipids were greatly inhibited in the presence of Bafilomycin A1. This demonstrates the involvement of imidazole ring protonation in the endosomal escape of DNA. Conversely, endosome escape of DNA with lipid 3 seemed to be independent of endosome acidification. However, with nuclear gene expression systems in 293T7, HepG2, and HeLa cells, the transfection efficacies of lipid 2 at a lipid:DNA mole ratio of 3.6:1 were found to be either equal to or somewhat lower than those of lipids 1 and 3. Interestingly, at a lipid:DNA mole ratio of 1.8:1, lipids 2 and 3 were remarkably more transfection efficient than lipid 1 in both HepG2 and HeLa cells. Mechanistic implications of such contrasting relative transfection profiles are delineated.  相似文献   

7.
When considering a family of cationic lipids designed for gene delivery, the nature of the cationic polar head probably has a great influence on both the transfection efficacy and toxicity. Starting from a cationic lipothiophosphoramidate bearing a trimethylammonium headgroup, we report herein the impact on gene transfection activity of the replacement of the trimethylammonium moiety by a trimethylphosphonium or a trimethylarsonium group. A series of three different human epithelial cell lines were used for the experimental transfection studies (HeLa, A549 and 16HBE14o(-)). The results basically showed that such structural modifications of the cationic headgroup can lead to a high transfection efficacy at low lipid/DNA charge ratios together with a low cytotoxicity. It thus appears that the use of a trimethylarsonium cationic headgroup for the design of efficient gene carriers, which was initially proposed in the lipophosphoramidate series, can be extended to other series of cationic lipids and might therefore have great potential for the development of novel non-viral vectors in general.  相似文献   

8.
An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low‐molecular‐weight fluorodendrimers for efficient gene delivery. These materials self‐assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy.  相似文献   

9.
Gene therapy requires the development of non-toxic and highly efficient delivery systems for DNA and RNAi. Polycations, especially dendrimers, have shown enormous potential as gene transfer vehicles, displaying minimal toxicity with a broad range of cell lines. In this paper, a total of 13 dendrimers, up to G3.0, were constructed from AB(3) type isocyanate monomers using solid phase methodology and evaluated for transfection activity. Among the library of compounds prepared, a G3.0 dendrimer displayed comparable activity to Superfect. Gel retardation assays demonstrated that all of the compounds completely bound plasmid DNA, indicating the efficient formation of complexes between DNA and the dendrimers. A "transfection microarray" approach was developed for screening these compounds as well as a panel of lipoplexes (complexes of DNA with cationic lipids) and polyplexes (complexes of DNA with synthetic polycationic polymers), in 3D solution like micro-assay). Five cationic lipids with a cholesterol tail showed stronger or comparable transfection activity relative to Effectene. The new, micro-array screening method was rapid and miniaturized, offering the potential of high throughput screening of large libraries of transfection candidates, with thousands of library members per array, and the ability to rapidly screen a broad range of cell types.  相似文献   

10.
The safe and efficient delivery of DNA remains the major barrier to the clinical application of non-viral gene therapy. Here, we present novel, biodegradable polymers for gene delivery that are capable of simple graft modification and demonstrate the ability to respond to intracellular conditions. We synthesized poly(beta-amino ester)s using a new amine monomer, 2-(pyridyldithio)-ethylamine (PDA). These cationic, degradable polymers contain pyridyldithio functionalities in the side chains that react with high specificity toward thiol ligands. This reactivity is demonstrated using both mercaptoethylamine (MEA) and the thiol peptide RGDC, a ligand that binds with high affinity to certain integrin receptors. These two polymer derivatives displayed strong DNA binding as determined using electrophoresis and dye exclusion assays. In addition, the MEA-based polymer and plasmid DNA were shown to self-assemble into cationic complexes with effective diameters as low as 100 nm. Furthermore, this DNA binding ability was substantially reduced in response to intracellular glutathione concentrations, which may aid in DNA unpackaging inside the cell. These complexes also displayed low cellular toxicity and were able to mediate transfection at levels comparable to PEI in human hepatocellular carcinoma cells. These results suggest that PDA-based poly(beta-amino ester)s may serve as a modular platform for polymer-mediated gene delivery.  相似文献   

11.
The leading principle of non-viral delivery systems for gene therapy is to mediate high levels of gene expression with low cytotoxicity. Nowadays, biodegradable nanoparticles formulated with poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) were wildly developed. However, the relative lower gene transfection efficiency and higher cytotoxicity still remained critical problems. To address these limitations, PLA-PEG nanoparticles have been composited with other components in their formulation. Here, a novel cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was fabricated onto PLA-PEG nanoparticles as a charge modifier to improve the transfection efficiency and cytotoxicity. The obtained cationic LHLN modified PLA-PEG nanoparticles (LHLN-PLA-PEG NPs) could condense pDNA thoroughly via electrostatic force, leading to the formation of the LHLN-PLA-PEG NPs/pDNA complexes (NPs/DNA complexes). The nanoparticles obtained have been characterized in relation to their physicochemical and biological properties, and the results are extremely promising in terms of low cell toxicity and high transfection efficiency. These results indicated that the novel cationic LHLN modified PLA-PEG nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice.  相似文献   

12.
A convergent synthesis of cationic amphiphilic compounds is reported here with the use of the phosphonodithioester–amine coupling (PAC) reaction. This versatile reaction occurs at room temperature without any catalyst, allowing binding of the lipid moiety to a polar head group. This strategy is illustrated with the use of two lipid units featuring either two oleyl chains or two-branched saturated lipid chains. The final cationic amphiphiles were evaluated as carriers for plasmid DNA delivery in four cell lines (A549, Calu3, CFBE and 16HBE) and were compared to standards (BSV36 and KLN47). These new amphiphilic derivatives, which were formulated with DOPE or DOPE-cholesterol as helper lipids, feature high transfection efficacies when associated with DOPE. The highest transfection efficacies were observed in the four cell lines at low charge ratios (CR = 0.7, 1 or 2). At these CRs, no toxic effects were detected. Altogether, this new synthesis scheme using the PAC reaction opens up new possibilities for investigating the effects of lipid or polar head groups on transfection efficacies.  相似文献   

13.
Non-viral gene carriers have been extensively investigated as alternatives to viral vectors for therapeutic gene delivery. Many cationic lipid carriers including liposomes, emulsions, and solid lipid nanoparticles are used to transfer plasmid DNA. Stable nanoemulsions were prepared and modified by conjugating fatty acids with cationic amino acids including lysine, arginine, and histidine with the help of carbodiimide. Concentrations of crosslinker and amino acids were optimized to obtain the maximal surface potential. The zeta potential and size distribution of the cationic nanoemulsions were measured using photon correlation spectroscopy. The morphology of nanoemulsion-DNA complexes was examined by transmission electron microscopy. The transfection efficiencies and cytotoxicity of three cationic nanoemulsions were evaluated using 3T3 fibroblast cells. The maximal zeta potentials of lysine-, arginine-, and histidine-modified nanoemulsions were 50, 43, and 7 mV, respectively. The transfection efficiencies of amino acid-modified nanoemulsions were in the order of lysine > arginine > histidine. Low cytotoxicities of these three amino acid-modified nanoemulsions were observed. A facile and inexpensive in situ modification for producing cationic nanoemulsions was developed. The results show the potential of amino acid-modified cationic nanoemulsions as non-viral vectors for gene delivery.  相似文献   

14.
Novel cationic liposomes, termed "archaeosomes", based on mixtures of neutral/cationic bilayer-forming lipids and archaeobacterial synthetic tetraether-type bipolar lipids show efficient in vitro gene transfection properties and represent a new approach for modulating the lipidic membrane fluidity of the complexes they form with DNA.  相似文献   

15.
Recently, membrane charge density of lipid membranes, sigma M, has been recognized as a universal parameter that controls the transfection efficiency of complexes made of binary cationic liposomes and DNA (binary lipoplexes). Three distinct regimes, most likely related to interactions between complexes and cells, have also been identified. The purpose of this work was to investigate the transfection efficiency behavior of multicomponent lipoplexes in the regime of optimal membrane charge density (1< sigma M < 2 x 10 (-2) e/A (2)) and compare their performance with that of binary lipoplexes usually employed for gene delivery purposes. We found remarkable differences in transfection efficiency due to lipid composition, with maximum in efficiency being obtained when multicomponent lipoplexes were used to transfect NIH 3T3 cells, while binary lipoplexes were definitely less efficient. These findings suggested that multicomponent systems are especially promising lipoplex candidates. With the aim of providing new insights into the mechanism of transfection, we investigated the structural evolution of lipoplexes when interacting with anionic (cellular) lipids by means of synchrotron small-angle X-ray diffraction (SAXD), while the extent of DNA release upon interaction with anionic lipids was measured by electrophoresis on agarose gels. Interestingly, a clear trend was found that the transfection activity increased with the number of lipid components. These results highlight the compositional properties of carrier lipid/cellular lipid mixtures as decisive factors for transfection and suggest a strategy for the rational design of superior cationic lipid carriers.  相似文献   

16.
A number of prior studies have demonstrated that the DNA-binding and gene transfection efficacies of cationic amphiphiles crucially depend on their various structural parameters including hydrophobic chain lengths, headgroup functionalities, and the nature of the linker-functionality used in tethering the polar headgroup and hydrophobic tails. However, to date addressing the issue of linker orientation remains unexplored in liposomal gene delivery. Toward probing the influence of linker orientation in cationic lipid mediated gene delivery, we have designed and synthesized two structurally isomeric remarkably similar cationic amphiphiles 1 and 2 bearing the same hydrophobic tails and the same polar headgroups connected by the same ester linker group. The only structural difference between the cationic amphiphiles 1 and 2 is the orientation of their linker ester functionality. While lipid 1 showed high gene transfer efficacies in multiple cultured animal cells, lipid 2 was essentially transfection incompetent. Findings in both transmission electron microscopic and dynamic laser light scattering studies revealed no significant size difference between the lipoplexes of lipids 1 and 2. Findings in confocal microscopic and fluorescence resonance energy transfer (FRET) experiments, taken together, support the notion that the remarkably higher gene transfer efficacies of lipid 1 compared to those of lipid 2 presumably originate from higher biomembrane fusogenicity of lipid 1 liposomes. Differential scanning calorimetry (DSC) and fluorescence anisotropy studies revealed a significantly higher gel-to-liquid crystalline temperature for the lipid 2 liposomes than that for lipid 1 liposomes. Findings in the dye entrapment experiment were also consistent with the higher rigidity of lipid 2/cholesterol (1:1 mole ratio) liposomes. Thus, the higher biomembrane fusibility of lipid 1 liposomes than that of lipid 2 liposomes presumably originates from the more rigid nature of lipid 2 cationic liposomes. Taken together, the present findings demonstrate for the first time that even as minor a structural variation as linker orientation reversal in cationic amphiphiles can profoundly influence DNA-binding characteristics, membrane rigidity, membrane fusibility, cellular uptake, and consequently gene delivery efficacies of cationic liposomes.  相似文献   

17.
Polymers for DNA delivery   总被引:4,自引:0,他引:4  
Nucleic acid delivery has many applications in basic science, biotechnology, agriculture, and medicine. One of the main applications is DNA or RNA delivery for gene therapy purposes. Gene therapy, an approach for treatment or prevention of diseases associated with defective gene expression, involves the insertion of a therapeutic gene into cells, followed by expression and production of the required proteins. This approach enables replacement of damaged genes or expression inhibition of undesired genes. Following two decades of research, there are two major methods for delivery of genes. The first method, considered the dominant approach, utilizes viral vectors and is generally an efficient tool of transfection. Attempts, however, to resolve drawbacks related with viral vectors (e.g., high risk of mutagenicity, immunogenicity, low production yield, limited gene size, etc.), led to the development of an alternative method, which makes use of non-viral vectors. This review describes non-viral gene delivery vectors, termed "self-assembled" systems, and are based on cationic molecules, which form spontaneous complexes with negatively charged nucleic acids. It introduces the most important cationic polymers used for gene delivery. A transition from in vitro to in vivo gene delivery is also presented, with an emphasis on the obstacles to achieve successful transfection in vivo.  相似文献   

18.
During the last two decades, cationic polymers have become one of the most promising synthetic vectors for gene transfection. However, the weak interactions formed between DNA and cationic polymers result in low transfection efficacy. Furthermore, the polyplexes formed between cationic polymers and DNA generally exhibit poor stability and toxicity because of the large excess of cationic polymer typically required for complete DNA condensation. Herein, we report the preparation of a novel class of bioreducible cationic nanomicelles by the use of disulfide bonds to connect the cationic shell to the fluorocarbon core. These bioreducible nanomicelles form strong interactions with DNA and completely condense DNA at an N/P ratio of 1. The resulting nanomicelle/DNA polyplexes exhibited high biocompatibility and performed very effectively as a gene‐delivery system.  相似文献   

19.
We have synthesized five new cholesterol based gemini cationic lipids possessing hydroxyethyl (-CH(2)CH(2)OH) function on each head group, which differ in the length of the polymethylene spacer chain. These gemini lipids are important for gene delivery processes as they possess pre-optimized molecular features, e.g., cholesterol backbone, ether linkage and a variable spacer chain between both the headgroups of the gemini lipids. Cationic liposomes were prepared from each of these lipids individually and as a mixture of individual cationic gemini lipid and 1,2-dioleoyl phosphatidylethanolamine (DOPE). Each gemini lipid based formulation induced better transfection activity than that of their monomeric counterpart. One such gemini lipid with a -(CH(2))(12)- spacer, HG-12, showed dramatic increase in the mean fluorescence intensity due to the expression of green-fluorescence protein (GFP) in the presence of 10% FBS compared to the conditions where there was no serum. Other gemini lipids retained their gene transfection efficiency without any marked decrease in the presence of serum. The only exception was seen with the gemini with a -(CH(2))(3)- spacer, HG-3, which on gene transfection in the presence of 10% FBS lost ~70% of its transfection efficiency. Overall the gemini lipid with a -(CH(2))(5)- spacer, HG-5, showed the highest transfection activity at N/P (lipid/DNA) ratio of 0.5 and lipid : DOPE molar ratio of 2. Upon comparison of the relevant parameters, e.g., %-transfected cells, the amount of DNA transfected to each cell and %-cell viability all together against Lipofectamine 2000, one of the best commercial transfecting agents, the optimized lipid formulation based on DOPE/HG-5 was found to be comparable. In terms of its ability to induce gene-transfer in the presence of serum and shelf-life DOPE/HG-5 liposome was found to be superior to its commercial counterpart. Confocal imaging analysis confirmed that in the presence of 10% serum using a Lipid : DOPE of 1 : 4 and N/P charge ratio of 0.75 with 1.2 μg DNA per well, HG-5 is better than Lipofectamine 2000.  相似文献   

20.
We have previously shown that synthetic archaeal lipid analogues are useful vectors for drug/gene delivery. We report herein the synthesis and gene transfer properties of a series of novel di- and tetraether-type archaeal derivatives with a poly(ethylene glycol) (PEG) chain and further equipped with a folic acid (FA) group. The synthetic strategy and the purification by dialysis ensured complete removal of free FA. The lipids were mixed with a conventional glycine betaine-based cationic lipid and the resulting formulations were tested in transfection assays after complexation with plasmid DNA. All four novel co-lipids afforded efficient in vitro gene transfection. Moreover, the FA-equipped derivatives permitted ligand/receptor-based targeted transfection; their activity was inhibited when free FA was added to the transfection medium. These novel archaeal derivatives equipped with FA-PEG moieties may thus be of great interest for targeted in vivo transfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号