首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采取溶胶-凝胶成膜技术,以正硅酸乙酯(TEOS)为原料,分别以水为溶剂NH3催化、乙醇为溶剂HCl催化和冰醋酸为溶剂各自制备出粒状结构、簇状结构和网状结构的二氧化硅溶胶,丙三醇作为添加剂与TEOS水解中间体以氢键结合控制二氧化硅溶胶形态,聚乙烯醇(PVA)与二氧化硅溶胶形成有机/无机互穿网络结构,易于成膜。热处理能使二氧化硅凝胶薄膜中的添加剂逸出并形成疏松结构,塑性形变使硅胶薄膜形成多孔、疏松、致密结构二氧化硅薄膜。实验表明,催化剂和溶剂效应直接影响着二氧化硅溶胶微观结构,从而影响着所形成的硅胶薄膜的微结构。多孔硅胶膜的平衡吸湿量是致密硅胶薄膜的3倍;而疏松结构的硅胶薄膜的吸湿量高于多孔硅胶薄膜的吸湿量,且其吸附速率明显大于多孔硅胶薄膜的吸附速率。  相似文献   

2.
The effect of ammonia concentration on the region of existence of single-phase water-in-oil microemulsions has been investigated for the system polyoxyethylene (5) nonylphenyl ether (NP-5)/cyclohexane/ammonium hydroxide. The presence of ammonia decreases the size of the microemulsion region. A minimum concentration of surfactant (estimated at about 1.1 wt%) is required for solubilization of the aqueous phase; this value is not significantly affected by ammonia concentration. As indicated by fluorescence spectral data, the transition between bound and free water occurs when the water-to-surfactant molar ratio is about 1 and the presence of ammonium hydroxide does not appear to have a significant effect on this. Ultrafine (30-70 nm diameter), monodisperse silica particles produced by hydrolysis of tetraethoxysilane (TEOS) in the microemulsion show a complex dependence of the particle size on the water-to-surfactant molar ratio (R) and on the concentration of ammonium hydroxide. At relatively low ammonia concentration in the aqueous pseudophase (1.6 wt% NH3) the particle size decreases monotonically with increase in R. However, for higher ammonia concentrations (6.3-29.6 wt% NH3) a minimum in particle size occurs as R is increased. These trends are rationalized in terms of (a) the effects of the concentration, structure, and dynamics of the NP-5 reverse micelles on the hydrolysis and condensation reactions of TEOS, and (b) the effects of ammonia concentration on the stability of the microemulsion phase, the hydrolysis/condensation reactions of TEOS, and the depolymerization of siloxane bonds. Copyright 1999 Academic Press.  相似文献   

3.
Yan L  Zhang Q  Zhang W  Feng Y  Zhang L  Li T  Zhang Y 《Electrophoresis》2005,26(15):2935-2941
A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.  相似文献   

4.
The surface free energy of a solid determines its surface and interfacial behavior in processes like wetting and adhesion which is crucial for silica aerogels in case of organic liquid absorption and transportation of chemicals at nano-scale for biotechnological applications. Here, we have demonstrated that the surface free energy of aerogels can be tuned in wide range from 5.5892 to 0.3073 mJ/m(2) by modifying their surface using TMCS and HMDZ silylating reagents. The alcogels were prepared by two step acid-base catalyzed process where the molar ratio of precursors Tetraethoxysilane (TEOS):Methanol (MeOH):Oxalic acid:NH(4)OH:NH(4)F was kept at optimal value of 1:2.7:0.18×10(-4):0.02:0.22×10(-3), respectively. To modify gel surfaces, TMCS and HMDZ concentration have been varied from 3% to 12% and such alcogels were dried at ambient pressure. It is observed from FTIR for aerogels that increase in concentration of silylating reagent resulted increase in hydrophobicity. This leads to increase in contact angle for water from 123° to 155° but leads to decrease in surface free energy from 5.5892 to 0.3073 mJ/m(2). As there is not direct method, we have used Neumann's equation of state to estimate surface energy of aerogels.  相似文献   

5.
In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.  相似文献   

6.
Silver-doped silica was prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS, Si(OC2H5)4) in the presence of a silver nitrate (AgNO3) solution by two different synthesis methods. In the first synthesis route, sol-gel mixtures were prepared using an acid catalyst. In the second synthesis route, silver-doped silica gels were formed by two-step acid/base catalysis. For the same concentration of silver dopant [AgNO3]/[TEOS] = 0.015 acid-catalyzed sol-gel formed a microporous silica with an average pore size of <25 Å whereas the two-step catalyzed silica had an average pore size of 250 Å and exhibited a mesoporous structure when fully dried. The differences in the pore size affected the silver particle formation mechanism and post-calcination silver particle size. After calcination at 800 °C for 2 h the acid-catalyzed silica contained metallic silver particles size with an average particle size of 24 ± 2 nm whereas two-step catalyzed silica with the same concentration of [AgNO3]/[TEOS] = 0.015 contained silver nanoparticles with an average size of approximately 32 ± 2 nm. Mechanisms for silver particle formation and for silica matrix crystallization with respect to the processing route and calcination temperature are discussed.  相似文献   

7.
The experimental results by using various exchanging solvents in the preparation of two step (acid and base) processed ambient pressure dried hydrophobic silica aerogels, are reported. Silica alcogels were prepared by hydrolysis with oxalic acid and condensation with NH4OH of ethanol diluted tetraethylorthosilicate (TEOS) precursor and hexamethyldisilazane(HMDZ) methylating agent. The exchanging solvents used were: hexane, cyclohexane, heptane, benzene, toluene and xylene. The physical properties such as % of volume shrinkage, density, pore volume, % of porosity, thermal conductivity, % of optical transmission, surface area, pore size distribution and contact angle (θ) of the silica aerogels with water, were measured as a function of EtOH/TEOS molar ratios (R) for all the exchanging solvents. It was found that the physical and hydrophobic properties of the silica aerogels strongly depend on the nature of the solvent and R. Heptane solvent resulted in highly transparent (≈90% optical transmission at 700 nm for 1 cm thick sample), low density (≈0.060 g/cm3), low thermal conductive (≈0.070 W/m·K), high % of porosity (97%), high surface area (750 m2/g), uniform porosity and hydrophobic (θ ≈ 160°) aerogels compared to other solvents. On the otherhand, xylene resulted in aerogels with higher hydrophobicity (θ ≈ 172°) among other solvents.  相似文献   

8.
Hybrid silica monolithic stationary phase functionalized with octyl groups was synthesized by a two-step acid/base-catalyzed hydrolysis/co-condensation of tetraethoxysilane (TEOS) and n-octyltriethoxysilane (C(8)-TEOS). The influences of determining factors in the sol-gel process such as the monomer ratio and water content on the monolith formation were systematically investigated. An increase in the TEOS/C(8)-TEOS ratio in the polymerization mixture shifted the pore size distribution towards smaller pore diameter with larger pore volume. The optimal TEOS/C(8)-TEOS volume ratio was found to be 90/50, under which condition the median pore diameter of the monolith was around 1.0 microm with pore volume of 3.25 cm(3)/g. The chromatographic characteristics of the monolithic column prepared with the optimized fabrication condition were studied. Some aromatic compounds including alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs) and phenols were successfully separated on the octyl-functionalized silica monolithic column with high column efficiency up to 180,000 plates/m.  相似文献   

9.
Silica sols were prepared by hydrolysis of Si(OC2H5)4(TEOS)using HCl,NH3·H2O,HCl/NH3·H2O as catalyzers,and the different granularities of SiO2 sols which catalyzed by HCl first and then NH3·H2O have the same terminal pH value were prepared. The silica colloidal particles were investigated with Transmission Electron Microscope(TEM). The results showed sol catalyzed by HCl possesses very little particle,catalyzed by NH3·H2O has particle configuration,catalyzed by HCl/NH3·H2O possesses consecutive configuration. Poly(diallyldimethylammonium chloride)(PDDA)and SiO2 nanoparticulate complex thin films were prepared by electrostatic self-assembly multiplayer(ESAM)method. After assembling films,thin films surface conformation was observed with Electron Microscope and their transmittance was tested with 721 Spectrophotometer. The results showed that the silica sol catalyzed with HCl is not good for the fabrication of ESAM films and the silica sol catalyzed with HCl first and then NH3·H2O or by NH3·H2O only are very suitable for ESAM film fabrication. TEM data indicate that the microstructure of PDDA/ SiO2 prepared from silica sol catalyzed with HCl first and then NH3·H2O is consecutive and that the microstructure of PDDA/ SiO2 prepared from silica sol catalyzed by NH3·H2O only is particulate-parking like. The dependence of the transmittance of assembled films on the bilayer number of the films and the anti-scratching properties of the films were investigated. The results show that PDDA/ SiO2 films prepared from silica sol catalyzed by NH3·H2O only possess higher transmittance but lower anti-scratching properties. The effect of granularity of sols on optical performances of the thin films was studied,results showed the less the granularity of sol,the better the optical performances. For the sake of improving the light transmittance of films,we can reduce the granularity of sol,but it may play down its mechanical damage resist intensity.  相似文献   

10.
Abstract

Organic-inorganic composite gel was prepared by using PEG-modified urethane acrylate (PMUA) gel and tetraethoxysilane (TEOS). PMUA gel was prepared by the phase-inversion emulsion polymerization of PMUA emulsion. The gelation of PMUA emulsion using this method enables PMUA gel to swell with H2O, TEOS, and ethanol. Hydrolysis and condensation reaction rates of the sol-gel process are strongly influenced by the pH controlled by catalysts such as HCl and NH4OH. Additionally, the morphology on the cross section of composite and the amount of silica ingredient incorporated into the composite gel were dependent on solvent, the molar ratio of H2O to TEOS, as well as the pH value.

As the silica content increased, due to hydrogen bonds interacting between PMUA gel and SiO2, particles, the tensile strength of composites considerably increased, whereas the elongation at break decreased. The incorporation of silica ingredient in PMUA gel/silica composites was verified with FTIR/ATR and SEM. The amount of the silica component in the composite was indirectly investigated by using TGA thermal analysis.  相似文献   

11.
The silica and urushiol based organic/inorganic hybrid was prepared with TEOS and urushiol by sol-gel process. GLYMO, as a silane-coupling agent, was used to obtain crack-free homogeneous films in various molar ratios, and to improve the adhesion between corona-treated BOPP substrate and the coatings. Two kinds of coating solutions were prepared; one was composed of TEOS and urushiol, the other was a mixture of TEOS, GLYMO and urushiol. Urushiol created less cracks on the film in a narrow range of molar ratios. As the amounts of urushiol were increased, the coating solutions quickly became heterogeneous. GLYMO was sufficient to prevent microcracks on the coated film and provided homogeneous coating solution. TEOS/urushiol and TEOS/GLYMO/urushiol coating solution gave insignificant effect on the permeability coefficients of oxygen, nitrogen and carbon dioxide, because the unsaturated alkyl side chain of urushiol might retard the formation of a dense structure between the inorganic silicate and the organic urushiol phase. From the antibacterial test of uncoating PP substrate and the coated film with hybrid solution, the reduction of bacteria of coating film was calculated to be 99.8%.  相似文献   

12.
A novel organic-inorganic composite was prepared by a sol-gel process using hydrolysis and condensation of tetraethoxysilane (TEOS) reacted with a saccharide. During the process, ethoxy groups of the TEOS were replaced with hydroxyl groups of the saccharide and, consequently, saccharide molecules were combined with silica through their hydroxyl groups. Samples obtained under different reaction conditions were used for optical resolution of a metal chelate compound. The resolution ability of the composites was affected by the amount of water added for hydrolysis and of the saccharide. In particular, the amount of water drastically influenced the optical resolution performance. Composites obtained at the lower H2O/TEOS ratio gave the metal chelate compound a higher optical rotation. Three types of composites with the same composition were prepared by kneading, impregnation and by the sol-gel method, and were compared. The sol-gel composite showed the best optical resolution ability. It was concluded that the optical resolution ability was closely related to dispersibility of saccharide in the silica matrix.  相似文献   

13.
A series of polymer-silica hybrid materials consisting of amino-terminated anionic waterborne-polyurethane (WPU) and inorganic silica particles have been prepared through a sol-gel process in the absence of an external catalyst. Typically, amino-terminated anionic WPU was first synthesized from polycaprolactone, dimethylol propionic acid, and 4,4′-methylenebis(cyclohexyl isocyanate) with specific molar ratios, followed by further reaction with triethylamine and triethylene tetramine to give as-prepared WPU. The WPU obtained was characterized by FTIR spectroscopy and gel permeation chromatography. Subsequently, a series of hybrid materials with different silica contents were prepared by performing sol-gel reactions with tetraethyl orthosilicate (TEOS) in an amino-terminated WPU matrix without the addition of an external catalyst. This was followed by examination by transmission electron microscopy and 29Si solid-state NMR. The terminated primary amine groups attached to the as-prepared WPU chains functioned as an internal base catalyst for the sol-gel process of TEOS. The effect of composition on the thermal stability, mechanical strength, surface wettability, and optical clarity of the hybrid materials was evaluated by the thermogravimetric analysis, dynamic mechanical analysis, contact angle measurement, and UV-visible transmission spectroscopy, respectively.  相似文献   

14.
In the present paper the experimental results of the effect of sol-gel processing temperature on the physical properties of the TEOS based silica aerogels are reported and discussed. The aerogels were produced by the two step sol-gel process at various temperatures in the range of 26–70∘;C followed by supercritical drying using methanol solvent extraction. A remarkable reduction in the gelation time was observed from three and a half days at room temperature to a mere 18 hours at 50∘;C. The best quality aerogels in terms of low density and high optical transmission were obtained for 6 hours hydrolysis time. The aerogels were characterized by the measurements of bulk density, volume shrinkage, porosity, refractive index and optical transmission. Monolithic aerogels with ultra low density (∼0.018 g/cm3), extremely high porosity (∼99%) and optimum optical transmission at 700 nm (∼75%) were obtained for the molar ratio of TEOS:MeOH:acidic water:basic water at 1:99:10.42:14.58 respectively.  相似文献   

15.
A new process to make monolithic and transparent silica xerogels with similar properties as silica aerogels by drying at ambient pressure has been studied. The xerogels are produced by strengthening the gel structure by additional precipitation of silica after the initial gelation. The additional precipitation of silica is achieved by ageing the alcogels in solutions of tetraethoxysilane (TEOS) and the aging is followed by a relatively rapid drying (<48 h) at ambient pressure. Due to the increased strength of the alcogels it is shown that the shrinkage during drying can be reduced and hence low density xerogels are obtained even if new monomers are added.  相似文献   

16.
Composite silica particles were synthesized by a two-step (acid-base) process in an aqueous solution with a mixture of organoalkoxysilane monomers. The two-step process separates the hydrolysis and condensation procedures to easily control condensation rate. In this study, the silane monomers used were phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), methyltrimethoxysilane (MTMS), and tetraethyl-orthosilicate (TEOS). The physical properties of the resultant composite particles were investigated with the change in the molar ratio of monomers. The size of the particles increased with increasing the molar ratio of RaSi(OR)3/RbSi(OR)3 or RaSi(OR)3/TEOS (Ra: phenyl; Rb: vinyl, methyl).  相似文献   

17.
The synthesis and physical properties of high surface area silica xerogels obtained by a two-step sol–gel process in the absence of supercritical conditions are reported. The hydrolysis and condensation reactions were followed by infrared spectroscopy. The increment in the bands corresponding to silanol and hydroxyl groups suggests that the hydrolysis reaction was complete during the first 30 min. The effect on surface area and global reaction time under various reaction conditions, such as type of alkaline catalyst and solvents, water–monomer and solvent–monomer molar ratios, was also studied. The obtained results suggest that surface area was increased using 3-aminopropyltriethoxysilane as catalyst. The use of isopropyl alcohol as solvent promotes the reduction of the capillary stress, giving a well-structured xerogel. As a conclusion, with H2O/i-PrOH/TEOS in a molar ratio of 10:4:1, it was possible to obtain silica xerogels with surface areas about 1,240 m2/g. Such surface areas are comparable with those obtained under supercritical conditions (aerogels), and higher than those xerogels conventionally obtained under normal condition (500–800 m2/g).  相似文献   

18.
A new solvent-less sol-gel route for silica film elaboration is presented. TEOS polymerization is induced by ozone bubbling through the initial sol composed of TEOS and water with the molar ratio R = [H2O]/[Si]. Replacing ozone by pure oxygen allows for demonstrating the specific effects of ozone. With ozone bubbling, a comparison of certain film properties is made between R = 0 and R = 5 with HCl aqueous solution (pH = 1.8). The opto-geometrical properties of the films are studied by spectroscopic ellipsometry, the surface topography by atomic force microscopy and the chemical content by infra-red spectroscopy. The huge influence of the R value on sol and film properties is shown.  相似文献   

19.
Anhydrous aluminosilicate sols with Al : Si molar ratio ranging from 1 : 10 to 1 : 5 were prepared by a two-step anhydrous sol-gel process, in which tetraethoxysilane (TEOS) is pre-hydrolysed by formic acid, followed by addition of aluminium ethoxide. Unlike the case of aqueous sol-gel routes, where the Si–O–Al network homogeneity is greatly restricted by precipitation of Al(OH)3, this anhydrous route yields clear, homogeneous sols. The sol formation and densification processes were investigated by infrared spectroscopy and X-ray powder diffraction (XRD) techniques, and the existence of Al–O–Si linkages was confirmed. To demonstrate an application of the anhydrous sol-gel process, aluminosilicate films were deposited onto graphite surfaces by dip coating and densified at 800°C under nitrogen, and their protective effect was evaluated.  相似文献   

20.
Fluorescent labeling based on silica nanoparticles facilitates unique applications in bioanalysis and bioseparation. Dye-doped silica nanoparticles have significant advantages over single-dye labeling in signal amplification, photostability and surface modification for various biological applications. We have studied the formation of tris(2,2'-bipyridyl)dichlororuthenium(II) (Ru(bpy)) dye-doped silica nanoparticles by ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in water-in-oil microemulsion. The fluorescence spectra, particle size, and size distribution of Ru(bpy) dye-doped silica nanoparticles were examined as a function of reactant concentrations (TEOS and ammonium hydroxide), nature of surfactant molecules, and molar ratios of water to surfactant (R) and cosurfactant to surfactant (p). The particle size and fluorescence spectra were dependent upon the type of microemulsion system chosen. The particle size was found to decrease with an increase in concentration of ammonium hydroxide and increase in water to surfactant molar ratio (R) and cosurfactant to surfactant molar ratio (p). This optimization study of the preparation of dye-doped silica nanoparticles provides a fundamental knowledge of the synthesis and optical properties of Ru(bpy) dye-doped silica nanoparticles. With this information, these nanoparticles can be easily manipulated, with regard to particle size and size distribution, and bioconjugated as needed for bioanalysis and bioseparation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号