首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The deprotonation of the push-pull molecule 4-hydroxy-4'-nitroazobenzene leads to a substantial variation in the charge distribution over the donor and acceptor moieties in the D-pi-azo-pi-A system. The extra charge stabilizes the excited state, leading to a drastic red shift of ca. 100 nm in the lambda max of the electronic transition and consequently causes significant changes in the resonance Raman enhancement profiles. In the neutral species the chromophore involves several modes, as nu(CN), nu(NN), and nu s(NO2), while in the anion the selective enhancement of the nu s(NO2) and nu(CO-) modes indicates a greater geometric variation of the NO2 and CO- moieties in the resonant excited electronic state. The interpretation of the electronic transitions and the vibrational assignment are supported by quantum-mechanical calculations, allowing a consistent analysis of the enhancement patterns observed in the resonance Raman spectra.  相似文献   

2.
The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ? ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ~4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE fluorescence. For the series of D/A molecules NPC, N-(4-fluorophenyl)carbazole (NP4F), N-[4-(trifluoromethyl)phenyl]carbazole (NP4CF), and NP4CN, with increasing electron affinity of their phenyl subgroup, an ICT emission in n-hexane 25 °C only is present for NP4CN, whereas in MeCN an ICT fluorescence is observed with NP4CF and NP4CN. The ICT fluorescence appears when for the energies E(ICT) of the ICT state and E(S(1)) of the lowest excited singlet state the condition E(ICT) ≤ E(S(1)) holds. E(ICT) is calculated from the difference E(D/D(+)) - E(A(-)/A) of the redox potentials of the D and A subgroups of the N-phenylcarbazoles. From solvatochromic measurements with NP4CN an ICT dipole moment μ(e)(ICT) = 19 D is obtained, somewhat larger than the literature values of 10-16 D, because of a different Onsager radius ρ. The carbazole/phenyl twist angle θ = 45° of NP4CN in the S(0) ground state, determined from X-ray crystal analysis, has become smaller for its ICT state, in analogy with similar conclusions for related N-phenylcarbazoles and other D/A molecules in the literature.  相似文献   

3.
A series of donor-acceptor chromophores was prepared in which the spacer separating 4-dimethylanilino (DMA) donor and C(CN)(2) acceptor moieties is systematically varied. All of the new push-pull systems, except 4 b, are thermally stable molecules. In series a, the DMA rings are directly attached to the central spacer, whereas in series b additional acetylene moieties are inserted. X-ray crystal structures were obtained for seven of the new, intensely colored target compounds. In series a, the DMA rings are sterically forced out of the mean plane of the residual pi system, whereas the entire conjugated pi system in series b is nearly planar. Support for strong donor-acceptor interactions was obtained through evaluation of the quinoid character of the DMA ring and by NMR and IR spectroscopy. The UV/Vis spectra feature bathochromically shifted, intense charge-transfer bands, with the lowest energy transitions and the smallest optical gap being measured for the two-dimensionally extended chromophores 6 a and 6 b. The redox behavior of the push-pull molecules was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In the series 1 b, 2 b, 4 b, 5 b, in which the spacer between donor and acceptor moieties is systematically enlarged, the electrochemical gap decreases steadily from 1.94 V (1 b) to 1.53 V (5 b). This decrease is shown to be a consequence of a reduction in the D-A conjugation with increasing spacer length. Degenerate four-wave mixing experiments reveal high third-order optical nonlinearities, pointing to potentially interesting applications of some of the new chromophores in optoelectronic devices.  相似文献   

4.
Intramolecular charge transfer (ICT) was studied on a series of magnesium, metal-free and zinc complexes of unsymmetrical tetrapyrazinoporphyrazines and tribenzopyrazinoporphyrazines bearing two dialkylamino substituents (donors) and six alkylsulfanyl or aryloxy substituents (non-donors). The dialkylamino substituents were responsible for ICT that deactivated excited states and led to considerable decrease of fluorescence and singlet oxygen quantum yields. Photophysical and photochemical properties were compared to corresponding macrocycles that do not bear any donor centers. The data showed high feasibility of ICT in the tetrapyrazinoporphyrazine macrocycle and significantly lower efficiency of this deactivation process in the tribenzopyrazinoporphyrazine type molecules. Considerable effect of non-donor peripheral substituents on ICT was also described. The results imply that tetrapyrazinoporphyrazines may be more suitable for development of new molecules investigated in applications based on ICT.  相似文献   

5.
A series of “push-pull” porphyrins with 4-nitrophenyl and 4-aminophenyl substituents were synthesized and separated by flash column chromatographic techniques. They were fully characterized by elemental analysis, FAB-MS, FTIR, UV-visible, and 1H NMR spectroscopies. The unsymmetrical π-electron distribution of the porphyrins caused by the donor (amino) and acceptor (nitro) substituents were investigated by 1H NMR technique. The pyrrole-H resonance positions can be correlated to the Hammett σ constants of the substituents. Although with strong donor and acceptor substituents, UV-visible spectra show the push-pull porphyrins have rather weak solvatochromism and hence limited intramolecular charge-transfer character.  相似文献   

6.
Seven homologous series p-A=B-C5H4(CH=CH)nX=Y (A=B: NO2, X=Y: CHO, COMe, CN, NO2; A=B: CN, X=Y: CHO, CN; A=B: H, X=Y: NO2) were synthesized, the effect of opposite terminal groups in phenylpolyenic conjugative systems has been studied by means of UV, XPS, 13C NMR and quantum chemical calculation. The results show that: 1. There exists the effect of opposite terminal groups exists in phenylpolyenic and other aromatic conjugative systems-2. When A=B and X=Y are the same, the group (-X=Y) connected at polyenic chain is a terminal group, while the other is an opposite terminal group. When the two groups are different, the one with weaker conjugative power plays the role of the opposite terminal group. 3. The effect of opposite terminal groups increases successively in the order of CN, COMe, CHO, NO2 and can be quantitatively described with substitute equivalent ΔNs. The λmax of compound containing an opposite terminal group can be calculated by the homologous equation 10?4 $ \tilde v = a + b/(1/2)^2 N'^{- S} a $, most of the calculated values are in agreement with experiment results.  相似文献   

7.
It is shown that the heptalene‐4,5‐dicarboxylates 5 react with their Me group at C(1) with N,N‐dimethylformamide dimethyl acetal or other acetals of this type in N,N‐dimethylformamide (DMF) to give the corresponding 1‐[(E)‐2‐(N,N‐dialkylamino)ethenyl]‐substituted heptalene‐4,5‐dicarboxylates 8a – 8e as well as 8k and 8i in good yields (Table 1). In a similar manner, the 1‐[(E)‐2‐pyrrolidinoethenyl]‐substituted heptalene‐5‐carboxylates 8f – h were synthesized from the corresponding heptalene‐carboxylates 10 – 12 , carrying a CHO, CN, or (E)‐2‐(methoxycarbonyl)ethenyl group at C(4) (Table 1). All new heptalenes with the π‐donor and π‐acceptor groups at C(1) and C(4), respectively, exhibit a strongly enhanced heptalene band I in the spectral region of 450 – 500 nm in MeCN (Table 7 and Figs. 47), whereby the specific position is dependent on the π‐donor quality of the N,N‐dialkylamino substituent at C(2′) and the π‐acceptor property of the group at C(4). The position of heptalene band I is also strongly solvent‐dependent as is demonstrated in the case of heptalene 8i (Table 9). A good linear correlation with the CT band of 1‐(diethylamino)‐4‐nitrobenzene or (E)‐4‐(dimethylamino)‐β‐nitrostyrene (Figs. 11 and 12) characterizes the heptalene band I also as an electronic CT transition. Irradiation into this band of 8i leads, as observed in other cases (cf. [1]), to a double‐bond shift in the heptalene moiety (→ 8′i ; Figs. 8 – 10). On warming in solution, 8′i is converted quantitatively to 8i .  相似文献   

8.
Subpicosecond absorption spectroscopy is used to characterize the primary photoinduced processes in a class of push-pull polyenes bearing a julolidine end group as the electron donor and a diethylthiobarbituric acid end group as the electron acceptor. The excited-state decay time and relaxation pathway have been studied for four polyenes of increasing chain length (n = 2-5 double bonds) in aprotic solvents of different solvation time, polarity, and viscosity. Intramolecular charge transfer (ICT) leading to a transient state of cyanine-like structure (fully conjugated with no bond length alternation) is observed in all polar solvents at a solvent dependent rate, but the reaction is not observed in cyclohexane, a nonpolar solvent. In polar solvents, the reaction time increases with the average solvation time but remains slightly larger, except in the viscous solvent triacetin. These facts are interpreted as an indication that both solvent reorganization and internal restructuring are involved in the ICT-state formation. The observed photodynamics resemble those we previously found for another class of polyenes bearing a dibutylaniline group as the donor, including a similar charge-transfer rate in spite of the larger electron donor character of the julolidine group. This observation brings further support to the proposal that an intramolecular coordinate is involved in the charge-transfer reaction, possibly a torsional motion of the donor end group. On the other hand, relaxation of the ICT state leads to cis-trans isomerization or crossing to the triplet state, depending on the length of the polyenic chain. In dioxane, tetrahydrofuran, and triacetin, the ICT state of the shorter chains (n = 2, 3) relaxes to the isomer with a viscosity-dependent rate, while that of the longer ones (n = 4, 5) leads to the triplet state with a viscosity-independent rate, as expected. In acetonitrile, the ICT-state lifetime is generally much shorter. A change from photoisomerization to intersystem crossing at n = 4 is also proposed in this solvent, but the formation of a photoproduct at n = 2 is not clear. In cyclohexane, where the ICT state is not formed, the relaxation pathway of the initially excited state is found to lead to an isomer for n = 2. As in polar solvents, a change to intersystem crossing at n = 4 is proposed. The direct relaxation to the ground state found at n = 3 for the series bearing a dibutylaniline group is not observed with the julolidine group. The results clearly illustrate that photoinduced reaction trajectories in push-pull polyenes are controlled by the static and dynamic properties of the solvent, the chemical nature and size of the end groups, and the conjugated-chain length and flexibility.  相似文献   

9.
The bis{4‐{2‐[2‐(dialkylamino)thiazol‐5‐yl]ethenyl}‐2,6‐dihydroxyphenyl}squaraines 12a , b were synthesized from ethyl carbonochloridate ( 1 ) in six steps (Scheme). The donor–acceptor–donor systems 12a , b are dark blue dyes with absorption maxima in the NIR region, unless the measurements are performed in the presence of EtOH. In the latter case, the long‐wavelength band disappears, and the absorption in the UV region is strongly enhanced. The λmax values in CHCl3 and CHCl3/EtOH differ by more than 450 nm. The completely reversible effect can be rationalized by the reversible degradation of intramolecular H‐bonds and a consequent torsion between the acceptor and the donor moieties.  相似文献   

10.
在DFT-B3LYP/6-311++G**水平上求得HOCl+HCOCl复合物势能面上的四种稳定构型(S1, S2, S3和S4). 其中, 在复合物S1和S3中, HOCl单体的5H原子作为质子供体, 与HCOCl单体中作为质子受体的1O原子相互作用, 形成红移氢键复合物; 在复合物S4中, HOCl单体的7Cl原子作为质子供体, 与HCOCl单体中作为质子受体的1O原子相互作用, 形成红移卤键复合物; 而在复合物S2中, 同时存在2C—3H…6O蓝移氢键和4Cl…5O相互作用. 在MP2/6-311++G**水平上计算的单体间的相互作用能考虑了基组重叠误差(BSSE)和零点振动能(ZPVE)校正, 其值在-5.05与-14.76 kJ·mol-1之间. 采用自然键轨道理论(NBO)对两种单体间相互作用的本质进行了考查, 并通过分子中原子理论(AIM)分析了复合物中氢键和卤键键鞍点处的电子密度拓扑性质.  相似文献   

11.
Excitation energy migration (EM) and assisted energy transfer (ET) properties of a few oligo(p-phenylenevinylene) (OPV) based organogelators with different end functional groups have been studied using picosecond time-resolved emission spectroscopy (TRES). EM was found to be more efficient in OPV gelators with small end functional groups (OPV3-4) when compared to that of the gelators with bulky end groups (OPV1-2) in the gel state. TRES studies at elevated temperature and in chloroform solution highlight the role of the self-assembled scaffolds in assisting the EM and ET processes. Increase in temperature and solvent polarity leads to the aggregate breaking and hence adversely affects the EM and ET efficiencies. The effect of EM efficiency on the fluorescence resonance energy transfer (FRET) properties of the OPV gels was studied by using OPV1 and OPV3 as the donors and OPV5 as the acceptor. Better transfer of excitation energy was observed in the donor system (OPV3) having higher EM efficiency even at very low concentration (3.1 mol%) of the acceptor molecules, whereas ET efficiency was lower in the donor system (OPV1) with low EM efficiency.  相似文献   

12.
HOCl…HCOCl复合物的结构和电子性质   总被引:1,自引:0,他引:1  
在DFT-B3LYP/6-311++G**水平上求得HOCl+HCOCl复合物势能面上的四种稳定构型(S1,S2,S3和S4).其中,在复合物S1和S3中,HOCl单体的5H原子作为质子供体,与HCOCl单体中作为质子受体的10原子相互作用,形成红移氢键复合物;在复合物S4中,HOCl单体的7Cl原子作为质子供体,与HCOCl单体中作为质子受体的IO原子相互作用,形成红移卤键复合物;而在复合物S2中,同时存在2C-3H…6O蓝移氢键和4Cl…5O相互作用.在MP2/6-311++G**水平上计算的单体间的相互作用能考虑了基组重叠误差(BSSE)和零点振动能(ZPVE)校正,其值在-5.05与-14.76 kJ·mol-1之间.采用自然键轨道理论(NBO)对两种单体间相互作用的本质进行了考查,并通过分子中原子理论(AIM)分析了复合物中氢键和卤键键鞍点处的电子密度拓扑性质.  相似文献   

13.
B3LYP/6-311++G** and MP2/6-311++G** calculations were used to analyze the interaction between hypochlorous acid (HOCl) and formyl chloride (HCOCl). The results showed that there were four equilibrium geometries (S1, S2, S3, and S4) optimized at B3LYP/6-311++G** level, and all the equilibrium geometries were confirmed to be in stable states by analytical frequency calculations. Complexes S1 and S3 use the 5H atom of HOCl as proton donor and the terminal 1O atom of HCOCl as acceptor to form red shift hydrogen bond systems. However, the blue-shifted hydrogen bond (2C-3H···6O) coexists with 4Cl···5O interaction in structures S2. As for S4, it uses the 7Cl atom of HOCl as proton donor and the terminal 1O atom of HCOCl as acceptor to form red shift halogen bond system. Interaction energies between monomers in the four complexes corrected with basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) lie in the range from −5.05 to −14.76 kJ·mol−1 at MP2/6-311++G** level. The natural bond orbital (NBO) and atoms in molecules (AIM) theories have also been applied to explain the structures and the properties of the complexes.  相似文献   

14.
From the resonance interaction between different NR2 substituents and the arylic π-system in mono-,1, 3-bis- and 1,3,5-tris(dialkylamino)benzenes, quantitative parameters are derived for the relative donor strength of the pyrrolidino, dimethylamino, piperidino and morpholino group. Towards an uncharged π-system in the ground state, the donor potential decreases in the series Pyr>N(CH3)2>Pip>Mor. The same order, though with somewhat different gradation, is observed for the aminobenzene/trinitrobenzene charge transfer complex absorptions, and for the polarographic oxidation potentials. The detailed analysis of the chemical shift/π-charge density correlations for methoxy and dialkylamino benzenes also reveals that these substituents exert a significant deshielding effect on protons in ortho-position. This additional downfield shift is probably due to steric interactions and strongly increases from the pyrrolidino to the piperidino group.  相似文献   

15.
Aromatic nucleophilic substitution reaction of cyclotriguaiacylene 1 with fluorobenzene derivatives bearing electron-withdrawing groups X (CHO, COCH(3), CN, NO(2)) in the para position gives a series of cyclotriveratrylene derivatives (3a-d), where the X substituents can be transformed to hydrogen-bond donor groups to afford new CTV-based heteroditopic receptors. The substituents of compounds 3a-d favor the facile demethylation reaction of the CTV derivatives. Attempts to perform alkylation reactions on derivatives (8c,d) evidenced the formation of a stereoisomeric mixture of symmetrical and unsymmetrical compounds.  相似文献   

16.
A novel donor-bridge-acceptor system has been synthesized by covalently linking a p-phenylene vinylene oligomer (OPV) and a perylene diimid (PERY) at opposite ends of a m-phenylene ethynylene oligomer (FOLD) of twelve phenyl rings, containing nonpolar (S)-3,7-dimethyl-1-octanoxy side chains. For comparison, model compounds have been prepared in which either the donor or acceptor is absent. In chloroform, the oligomeric bridge is in a random coil conformation. Upon addition of an apolar solvent (heptane) the oligomeric bridge first folds into a helical stack and subsequently intermolecular self-assembly of the stacks into columnar architectures occurs. Photoexcitation in the random coil conformation, where the interaction between the donor and acceptor chromophores is small, results only in long-range intramolecular energy transfer in which the OPV singlet-excited state is transformed into the PERY singlet-excited state. In the folded conformation of the bridge, donor and acceptor are closer and their enhanced interaction favors the formation the OPV(*)(+)-FOLD-PERY(*)(-) charge-separated state upon photoexcitation. As a result, the extent of photoinduced charge separation depends on the degree of folding of the bridge between donor and acceptor and therefore on the apolar nature of the medium. As a consequence, and contrary to conventional photoinduced charge separation processes, the formation of the OPV(*)(+)-FOLD-PERY(*)(-) charge-separated state is more favored in apolar media.  相似文献   

17.
The (1)H and (13)C NMR spectra of a number of push-pull alkenes were recorded and the (13)C chemical shifts calculated employing the GIAO perturbation method. Of the various levels of theory tried, MP2 calculations with a triple-zeta-valence basis set were found to be the most effective for providing reliable results. The effect of the solvent was also considered but only by single-point calculations. Generally, the agreement between the experimental and theoretically calculated (13)C chemical shifts was good with only the carbons of the carbonyl, thiocarbonyl, and cyano groups deviating significantly. The substituents on the different sides of the central C=C partial double bond were classified qualitatively with respect to their donor (S,S < S,N < N,N) and acceptor properties (C identical with N < C=O < C=S) and according to the ring size on the donor side (6 < 7 < 5). The geometries of both the ground (GS) and transition states (TS) of the restricted rotation about the central C=C partial double bond were also calculated at the HF and MP2 levels of theory and the free energy differences compared with the barriers to rotation determined experimentally by dynamic NMR spectroscopy. Structural differences between the various push-pull alkenes were reproduced well, but the barriers to rotation were generally overestimated theoretically. Nevertheless, by correlating the barriers to rotation and the length of the central C=C partial double bonds, the push-pull alkenes could be classified with respect to the amount of hydrogen bonding present, the extent of donor-acceptor interactions (the push-pull effect), and the level of steric hindrance within the molecules. Finally, by means of NBO analysis of a set of model push-pull alkenes (acceptors: -C identical with N, -CH=O, and -CH=S; donors: S, O, and NH), the occupation numbers of the bonding pi orbitals of the central C=C partial double bond were shown to quantitatively describe the acceptor powers of the substituents and the corresponding occupation numbers of the antibonding pi orbital the donor powers of the substituents. Thus, for the first time an estimation of both the acceptor and the donor properties of the substituents attached to the push-pull double bond have been separately quantified. Furthermore, both the balance between strong donor/weak acceptor substituents (and vice versa) and the additional influences on the barriers to rotation (hydrogen bonding and steric hindrance in the GSs and TSs) could be differentiated.  相似文献   

18.
分别以绕丹宁和噻唑烷-2,4-二酮单元为端基、IDT为中心核设计合成了一个新型不对称结构的有机小分子受体IDT-2,并通过与两端均以绕丹宁或噻唑烷-2,4-二酮受体单元的对称小分子受体IDT-1和IDT-3进行对比,探讨了分子结构与性能之间的关系。研究发现,从IDT-1到IDT-3,随着两端的绕丹宁基团被噻唑烷-2,4-二酮基团逐步取代,这类小分子受体的吸收光谱显著蓝移,光学带隙E_g~(opt)逐步增大,LUMO和HOMO能级也逐渐抬升。随后我们分别以这三个小分子为受体、P3HT为给体共混构建活性层而制备了有机太阳能电池,结果表明,以两端均为绕丹宁单元的对称结构小分子受体IDT-1构建的电池器件具有最高的光电转换效率(PCE),相应的J_(sc)和FF值也最大,而V_(oc)则最低;而以两端均为噻唑烷-2,4-二酮基团的对称结构小分子受体IDT-3的电池器件,其V_(oc)最高,但其J_(sc)和FF则最低,PCE值也最小。对于IDT-2而言,由于分子只有一个绕丹宁单元被噻唑烷-2,4-二酮所取代,其V_(oc),J_(sc)和PCE均介于IDT-1与IDT-3之间。由此说明,尽管噻唑烷-2,4-二酮基团的引入能有效提升器件V_(oc),但却不利于改善其J_(sc)和FF,因此受体的分子设计中如何平衡电池器件的几种光伏性能参数而获得高的光电转换效率仍是十分重要的研究课题之一。  相似文献   

19.
A series of geminal diethynylethenes (g‐DEEs) with electron‐donating and/or electron‐accepting (D/A) groups were synthesized via a Pd‐catalyzed cross‐coupling sequence. The UV/VIS spectra for donor–acceptor (D–A) functionalized g‐DEEs 5, 8 , and 11 show distinctive absorption trends attributable to intramolecular charge‐transfer (ICT). The bond‐length‐alternation (BLA) index for the cross‐conjugated enediyne framework varies slightly with different terminal substituents as determined by density‐functional theory (DFT) calculations and single‐crystal X‐ray analysis. Ultrafast third‐order optical nonlinearities for the g‐DEEs were measured by the differential optical Kerr effect (DOKE) technique and show that terminal donor–acceptor substitution of g‐DEEs enhances molecular second hyperpolarizabilities (γ) in comparison to donor or acceptor g‐DEEs. A small increase in the two‐photon‐absorption cross‐section (σ(2)) is observed in the series 9 – 11 as a result of increased functionalization. The effects of donor/acceptor substitution on electron delocalization along the cross‐conjugated enediyne structure are evaluated on the basis of natural‐bond‐orbital (NBO) analysis. Solid‐state structures of the four derivatives 3b, 4b, 7 and 8 were characterized by single‐crystal X‐ray structural analysis and show an asymmetric unit cell for one derivative, D–A g‐DEE 8 .  相似文献   

20.
The five 2,3,5,6-tetrafluoro-4-aminobenzonitriles XABN4F with a dimethyl-amino (DMABN4F), diethyl-amino (DEABN4F), azetidinyl (AZABN4F), methyl-amino (MABN4F) or amino (ABN4F) group undergo ultrafast intramolecular charge transfer (ICT) at room temperature, in the polar solvent acetonitrile (MeCN) as well as in the nonpolar n-hexane. ICT also takes place with the corresponding non-fluorinated aminobenzonitriles DMABN, DEABN and AZABN in MeCN, whereas for these molecules in n-hexane only minor (DMABN, DEABN) or no (AZABN) ICT fluorescence is detected. For the secondary (MABN) and primary (ABN) amines, an ICT reaction does not occur, which makes ABN4F the first electron donor/acceptor molecule with an NH(2) group for which ICT is observed. The ICT state of the XABN4Fs has a dipole moment of around 14 D, clearly smaller than that of DMABN (17 D). This difference is attributed to the electron withdrawing from the CN group to the phenyl ring, exerted by the four F-substituents. The reaction from the initially prepared locally excited (LE) to the ICT state in n-hexane proceeds in the sub-picosecond time range: 0.35 ps (DMABN4F), 0.29 ps (DEABN4F) and 0.13 ps (AZABN4F), as determined from femtosecond transient absorption measurements. In the highly polar solvent MeCN, an ICT reaction time of around 90 fs is observed for all five XABN4Fs, irrespective of the nature of their amino group. This shows that with these molecules in MeCN the ICT reaction rate is limited by the solvent dielectric relaxation time of MeCN, for which a value of around 90 fs has been reported. It is therefore concluded that, during this ultrashort ICT reaction, a large-amplitude motion such as a full 90 degrees twist of the amino group is unlikely to occur in the XABN4Fs. The ICT state of the XABN4Fs is strongly quenched via internal conversion (IC), with a lifetime tau'(0) (ICT) down to 3 ps, possibly by a reaction passing through a conical intersection made accessible due to a deformation of the phenyl group by out-of-plane motions induced by vibronic coupling between low-lying pisigma* and pipi* states in the XABN4Fs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号