首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of acid dissociation constants by capillary electrophoresis   总被引:2,自引:0,他引:2  
Capillary electrophoresis affords a simple, automated approach for the measurement of pKa values in the range 2-11 at a throughput of less than 1 h per sample per instrument. Agreement with literature values is usually within 0.20 log units with a precision better than 0.07 log units. The attractive features of capillary electrophoresis for pKa measurements are: (1) conventional instrumentation with a high level of automation are suitable for all measurements; (2) because it is a separation method samples need not be of high purity; (3) samples of low water solubility with suitable chromophores are easily handled (detection limits in the microM range); (4) sample consumption per measurement is in the microgram range; and (5) since only mobilities are measured, exact knowledge of concentrations is not needed. The general approach can be extended to pKa measurements in aqueous-organic solvent mixtures and non-aqueous solvents with suitable calibration. The widespread use of absorbance detection in capillary electrophoresis means that the sample must have a suitable chromophore for detection. The main source of controllable error is the accuracy of buffer standardization and their stability in use, and uncontrollable error, the retentive interactions of the sample with the column wall. The latter seems to be a rare problem in practice for typical operating conditions.  相似文献   

2.
3.
Ionization constants of some flavanols (catechin and epicatechin) and flavonols (kaempherol, fisetin, morin, and quercetin) are determined by capillary zone electrophoresis (CZE). This technique allows the determination of pK(a) values until about 12. The pK(a) values obtained are compared with those calculated by the SPARC computational program. This program predicts the microscopic and macroscopic pK(a) values and the order of deprotonation of the different -OH groups. While for catechin and epicatechin the first ionizable OH group occurs in ring 1 and the second ionizable group in ring 2, in flavonols the first deprotonation occurs in ring 2 and the second in ring 1.  相似文献   

4.
CZE was employed to determine acid-base dissociation constants (pK(a)) of ionogenic groups of azahelicenes in methanol (MeOH). Azahelicenes are unique 3-D aromatic systems, which consist of ortho-fused benzene/pyridine units and exhibit helical chirality. The pK(a) values of pyridinium groups of the studied azahelicenes were determined from the dependence of their effective electrophoretic mobility on pH by a nonlinear regression analysis. The effective mobilities of azahelicenes were determined by CZE at pH range between 2.1 and 10.5. Thermodynamic pK(a) values of monobasic 1-aza[6]helicene and 2-aza[6]helicene in MeOH were determined to be 4.94 +/- 0.05 and 5.68 +/- 0.05, respectively, and pK(a) values of dibasic 1,14-diaza[5]helicene were found to be equal to 7.56 +/- 0.38 and 8.85 +/- 0.26. From these values, the aqueous pK(a) of these compounds was estimated.  相似文献   

5.
Capillary electrophoresis was applied to investigate pKa values of 99mTc radiotracers used in nuclear medicine. Therefore, the protonation equilibria of the carboxyl groups of 99mTc-mercaptoacetylglycylglycylglycine (99mTc-MAG3) and 99mTc-ethylenecysteine dimer (99mTc-EC) were studied by pH-dependent determination of electrophoretical velocities. 99mTc-ethylenecysteine dimer diethyl ester (99mTc-ECD) was used as a non-protonable standard. The capillary electrophoresis system was equipped with a radioactivity detector. Measurements were performed using a pressure-driven capillary zone electrophoresis which allowed runs even in the low pH range. For the determination of pKa values, the electrophoretical velocities of the analytes were referred to the electrophoretical velocities of tetraphenyle arsonium chloride as a positively charged marker. Calculation of pKa values was accomplished by non-linear curve fitting of both structure-based equilibria equations and sigmoidal decay functions to the experimental data. 99mTc-MAG3 was shown to have a carboxyl group pKa value of 4.22. The value for the carboxyl groups of 99mTc-EC is 2.90 (determined by structure-based equilibria equations), which represents a common value for both carboxyl groups. By the use of sigmoidal functions, similar values were elucidated. As expected, 99mTc-ECD shows no protonation step.  相似文献   

6.
Shihabi ZK 《Electrophoresis》2002,23(11):1612-1617
We show that many water miscible organic solvents such as acetonitrile, acetone and small alcohols can function as a terminating ion in transient isotachophoresis, which leads to sample concentration on the capillary. It is suggested that this method could be termed transient "pseudo-isotachophoresis" (pseudo-ITP). Because of their low conductivity, these water miscible organic solvents provide the high field strength necessary for band sharpening similar to that provided by the terminating ion. Salts, when present in such samples act briefly as leading ions, migrating rapidly in the organic solvent until they are slowed at the interface of the separation buffer. When the organic solvents are added to the sample, both the migrations as well as the stacking of the analytes are affected by the concentration of salts (leading ions) in the sample, similar to that observed in isotachophoresis. Our results show that this type of stacking offers good reproducibility and reliability for practical analysis. In practice, pseudo-ITP stacking is much easier to perform compared to that of true ITP with several added practical advantages as discussed.  相似文献   

7.
Acid dissociation constants (pKa) of nine kinds of flavin analogues as molecular catalyst candidates were determined by CZE. Although some of the analogues are instable and degradable under the light exposure or in alkaline aqueous solutions, the effective electrophoretic mobility of the flavin analogue of interest has been measured with the residual substance. The pKa values of the flavin analogues were analyzed through the changes in the effective electrophoretic mobility with varying pH of the separation buffer. One or two steps pKa values were determined by the analysis. One of the degraded species from the flavin analogues, lumichrome, was also detected in the CZE analysis, and its pKa values were also determined. While coexisting impurities generated over the storage conditions were found in some analogues, the pKa values of the target analogues were successfully determined with the help of the CZE separations. A pressure-assisted CZE was utilized for the determination or the estimation of the pKa values of such analogues as possessing carboxylic acid moiety.  相似文献   

8.
Fu X  Liu Y  Li W  Bai Y  Liao Y  Liu H 《Talanta》2011,85(1):813-815
Aristolochic acid-I and aristolochic acid-II have been proved to be the main bioactive and toxic component in Aristolochia plants. As a result, the determination of their dissociation constants, which are important property parameters for weak acids, is highly desired for related pharmacological and toxicological studies. In this work, the dissociation constant values of aristolochic acid-I and aristolochic acid-II were determined by capillary electrophoresis using carboxymethyl chitosan-coated capillary, based on their electrophoretic mobilities by using nonlinear regression as well as linear regression, showing that the two models give comparable results. The data were also compared with those obtained by capillary electrophoresis with polybrene-coated capillary, and no conspicuous difference was observed. The correlation coefficients were all higher than 0.998 for both linear and nonlinear regression model. The pKa values were found to be 3.3±0.1 for aristolochic acid-I and 3.2±0.1 for aristolochic acid-II.  相似文献   

9.
L Yang  Z Yuan 《Electrophoresis》1999,20(14):2877-2883
A method is proposed for the determination of dissociation constants of amino acids by capillary zone electrophoresis. According to the dissociation equilibrium of amino acids and the basic theory of electrophoresis, the nonlinear relationship between the pH value of the buffer and the effective electrophoretic mobilities of the analyte was obtained. The dissociation constants can be calculated from the pH values and the corresponding effective electrophoretic mobilities using the program written in C++. The dissociation constants, pKa1 and pKa2, of 11 kinds of amino acids were determined successfully by the proposed method. The determined dissociation constants were compared with values in the literature; the differences between them are in the range of -0.03 to 0.06. No significant differences were observed between the determined dissociation constants and the corresponding literature values.  相似文献   

10.
The determination of dissociation constands (K(d)) by competitive ligand binding in partial filling capillary electrophoresis is demonstrated. Two different strategies were applied, one of which only uses a single reporter ligand and a more elaborated one which suppresses systemic disturbances by using a racemic mixture as reporter. The dissociation constants obtained by both alternatives were virtually identical and in good agreement with those previously reported.  相似文献   

11.
An estimation method for determination of binding constants of receptors to ligands by affinity capillary electrophoresis was evaluated. On the basis of the theories of pseudostationary phase or so-called dynamic stationary phase, the retention factor (k) was used to represent the interaction between the receptor and ligand. k could be easily deduced from the migration times of the ligand and the receptor. Then, with the linear relationship of k versus the concentration of ligand in the running buffer, the binding constant K b was calculated from the slope and intercept. In order to test its feasibility, the calculation method was demonstrated using three model systems: the interactions between vancomycin and N-acetyl-d-Ala-d-Ala, ristocetin and N-acetyl-d-Ala-d-Ala, and carbonic anhydrase B and an arylsulfonamide. Estimated binding constants were compared with those determined by other techniques. The results showed that this estimation method was reliable. This calculation method offers a simple and easy approach to estimating binding constants of ligands to receptors.  相似文献   

12.
Multiple-injection affinity capillary electrophoresis (MIACE) is used to determine binding constants (K b) between receptors and ligands using as model systems vancomycin and teicoplanin from Streptomyces orientalis and Actinoplanes teichomyceticus, respectively, and their binding to D-Ala-D-Ala peptides and carbonic anhydrase B (CAB. EC 4.2.1.1) and the binding of the latter to arylsulfonamides. A sample plug containing a non-interacting standard is first injected followed by multiple plugs of sample containing the receptor and then a final injection of sample containing a second standard. Between each injection of sample, a small plug of buffer is injected which contains an increasing concentration of ligand to effect separation between the multiple injections of sample. Electrophoresis is then carried out in an increasing concentration of ligand in the running buffer. Continued electrophoresis results in a shift in the migration time of the receptor in the sample plugs upon binding to their respective ligand. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility (μ) of the resultant receptor–ligand complex relative to the non-interacting standards, as a function of the concentration of ligand yields a value for K b. The MIACE technique is a modification in the ACE method that allows for the estimation of binding affinities between biological interactions on a timescale faster than that found for standard ACE. In addition sample volume requirements for the technique are reduced compared to traditional ACE assays. These findings demonstrate the advantage of using MIACE to estimate binding parameters between receptors and ligands.  相似文献   

13.
Accurate determination of pK(a) values is important for proper characterization of newly synthesized molecules. In this work we have used CZE for determination of pK(a) values of new compounds prepared from intermediates, 2, 3 and 4-(2-chloro-acetylamino)-phenoxyacetic acids, by substituting chloride for 2-oxo-pyrrolidine, 2-oxo-piperidine or 2-oxo-azepane. These substances are expected to have a cognition enhancing activity and free radicals scavenging effect. Measurements were performed in a polyacrylamide-coated fused-silica capillary of 0.075 mm ID using direct UV detection at 254 nm. Three electrolyte systems were used for measurements to eliminate effects of potential interactions between tested compounds and components of the BGE. In the pH range 2.7-5.4, chloride, formate, acetate and phosphate were used as BGE co-ions, and sodium, beta-alanine and epsilon-aminocaproate as counterions. Mobility standards were measured simultaneously with the tested compounds for calculations of correct electrophoretic mobilities. Several approaches for the calculation of the pK(a) values were used. The values of pK(a) were determined by standard point-to-point calculation using Henderson-Hasselbach equation. Mobility and pH data were also evaluated by using nonlinear regression. Three parameter sigmoidal function fitted the experimental data with correlation coefficients higher than 0.99. Results from CZE measurements were compared with spectrophotometric measurements performed in sodium formate buffer solutions and evaluated at wavelength where the highest absorbance difference for varying pH was recorded. The experimental pK(a) values were compared with corresponding values calculated by the SPARC online calculator. Results of all three used methods were in good correlation.  相似文献   

14.
A simple method to calculate dissociation constants for protein-ligand interactions by partial-filling capillary electrophoresis is demonstrated. The method uses raw migration time data for the ligand and needs only additional information about capillary inner radius and the absolute amount of protein loaded. A theoretical study supported by experimental data also demonstrates that the retention of analyte in affinity capillary electrophoresis (ACE) using the partial-filling technique depends linearly on the absolute amount of selector added but is independent of both selector zone length and selector mobility. Factors such as field strength and electroosmotic flow are also cancelled out if they are kept constant. The theory is confirmed and the usefulness of the method is demonstrated by enantioseparations using alpha-acid glycoprotein (AGP) and cellulase (Cel 7A) as chiral selectors.  相似文献   

15.
A single step on-line concentration and separation method for peptides in non-aqueous capillary electrophoresis was developed. ACN containing 50 mM tetraethylammonium perchlorate was used as the electrophoretic medium; angiotensins I-IV were separated as a result of the differences in the magnitudes of their interactions with perchlorate anions. When the sample solution (ACN containing 0.5% trifluoroacetic acid and angiotensins) was injected as a large-volume plug, the analytes were concentrated at the inlet end of the capillary by both sweeping and stacking mechanisms; the separation procedure then started automatically without any operations such as polarity change. It was found that the concentration of analytes, injection period, and concentration of tetraethylammonium perchlorate in the electrophoretic medium were important factors for both separation and concentration efficiencies. The angiotensins were concentrated and separated with the large-volume injection of up to 80% of the effective capillary length.  相似文献   

16.
McKeon J  Holland LA 《Electrophoresis》2004,25(9):1243-1248
Dynamic affinity capillary electrophoresis (ACE) was used for determining the binding constants between heparin-like glycosaminoglycans and the (96-110) heparin-binding domain of amyloid precursor protein (APP). The migration time shift of the (96-110) APP peptide was monitored as the concentration of heparin was increased in the background electrolyte. The compounds investigated included low-molecular-weight heparin, porcine mucosa heparin, and heparan sulfate. Change in mobility as a function of glycosaminoglycan concentration was plotted using both linear regression (Scatchard analysis) and nonlinear regression. Dissociation constants (K(d)) were determined and compared for both sets of analyses with the low-molecular-weight heparin giving the most reproducible results and best fit with a K(d) value of 3.9 microM.  相似文献   

17.
Multiple-injection affinity capillary electrophoresis (MIACE) was used to determine binding constants (K(b)) between vancomycin, ristocetin, and teicoplanin from Streptomyces orientalis, Nocardia lurida, and Actinoplanes teichomyceticus, respectively, and fluorenylmethoxycarbonyl (Fmoc)-(Gly, Ala, Val, and Phe)-D-Ala-D-Ala peptides. In this technique, separate plugs of sample containing non-interacting standards, peptide one, buffer, and peptide two, were injected into the capillary column and electrophoresed. Peptides migrate through the column at similar electrophoretic mobilities but remain as distinct zones due to the buffer plug between peptides. The electrophoresis is then carried out in an increasing concentration of antibiotic in the running buffer. Continued electrophoresis results in a shift in the migration time of the peptides upon binding to the antibiotic. Analysis of the change in the relative migration time ratio (RMTR) of the resultant complexes relative to the non-interacting standards, as a function of the concentration of antibiotic yields a value for K(b). MIACE is a versatile technique that can be used to measure affinity constants between ligands of similar relative molecular mass and charge without the need of separate binding experiments. The findings described, herein, demonstrate the advantages of using MIACE to estimate binding parameters between ligands and receptors.  相似文献   

18.
A novel procedure for the determination of stability constants in systems with neutral analytes and charged complexation agents by affinity capillary electrophoresis was established. This procedure involves all necessary corrections to achieve precise and reliable data. Temperature, ionic strength, and viscosity corrections were applied. Based on the conductivity measurements, the average temperature of the background electrolyte in the capillary was kept at the constant value of 25°C by decreasing the temperature of the cooling medium. The viscosity correction was performed using the viscosity ratio determined by an external viscosimeter. The electrophoretical measurements were performed, at first, at constant ionic strength. In this case, the increase of ionic strength caused by increasing complexation agent concentration was compensated by changing of the running buffer concentration. Subsequently the dependence of the analyte effective mobility on the complexation agent concentration was measured without the ionic strength compensation (at variable ionic strength). The new procedure for determination of the stability constants even from such data was established. These stability constants are in a very good agreement with those obtained at the constant ionic strength. The established procedure was applied for determination of the thermodynamic stability constants of (R, R)-(+)- and (S, S)-(-)-hydrobenzoin and R- and S-(3-bromo-2-methylpropan-1-ol) complexing with 6-monodeoxy-6-mono(3-hydroxy)propylamino-β-cyclodextrin hydrochloride.  相似文献   

19.
This work demonstrates the use of multiple-step ligand injection affinity capillary electrophoresis (ACE) using two model systems: vancomycin from Streptomyces orientalis and carbonic anhydrase B (CAB, EC 4.2.1.1). In this technique a sample plug of receptor and non-interacting standards is injected by pressure and electrophoresed in a buffer containing a given concentration of ligand. The sequence is repeated for all concentrations of ligand generating a single electropherogram containing a series of individual sample plugs superimposed on environments of buffer containing increasing concentrations of ligand. Analysis of the change in the relative migration time ratio, RMTR, relative to the non-interacting standards, as a function of the concentration of the ligand, yields a value for the binding constant. A competitive assay using the technique is also demonstrated using neutral ligands for CAB. These values agree well with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method are presented.  相似文献   

20.
Brown A  Morales C  Gomez FA 《Talanta》2008,74(4):605-612
In this paper, we describe the development of a microfluidic/capillary electrophoresis (CE) technique employing partial filling affinity capillary electrophoresis (PFACE) to estimate binding constants of ligands to receptors using as model systems carbonic anhydrase B (CAB, EC 4.2.1.1) and vancomycin from Streptomyces orientalis. Using multilayer soft lithography (MSL), a microfluidic device (MD) consisting of fluid and control channels is fabricated and fitted with an external capillary column. Multiple flow channels allows for manipulation of a zone of ligand and sample containing receptor and non-interacting standards into the MD and subsequently into the capillary column. Upon electrophoresis the sample components migrate into the zone of ligand where equilibrium is established. Changes in migration time of the receptor are used in the analysis to obtain a value for the binding interaction. The manipulation of small volumes of solution on the MD minimizes the need of time-consuming pipetting steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号