首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition of salbutamol (β2 — selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E act=130 kJ mol−1 (for standard sample) and E act=252 kJ mol−1 (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min−1). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min−1). The calculated values were E act=134 kJ mol−1 (for standard sample) and E act=139 kJ mol−1 (for pharmaceutical sample).  相似文献   

2.
The oxidation of Ni100–xPx(7.3 at%<x<25.0 at%) powders in air in the temperature range 350–450°C was determined by kinetics and X-ray diffraction. The isothermal kinetics was modeled using theGinstling–Brounstein equations. The oxidation process was found to be thermally activated with activation energy 127.8 kJ mol–1 for x=7.3 at% to 157.7 kJ mol–1 for x=25.0 at%. It was found that the rate constants for x=7.3 at% were approximately 100 times lower than those for x=25.0 at%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The standard (p 0=0.1 MPa) molar enthalpy of formation, Δf H 0 m, for crystalline N-phenylphthalimide was derived from its standard molar enthalpy of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as –206.0±3.4 kJ mol–1. The standard molar enthalpy of sublimation, Δg cr H 0 m , at T=298.15 K, was derived, from high temperature Calvet microcalorimetry, as 121.3±1.0 kJ mol–1. The derived standard molar enthalpy of formation, in the gaseous state, is analysed in terms of enthalpic increments and interpreted in terms of molecular structure.  相似文献   

4.
The energy of combustion of crystalline 3,4,5-trimethoxybenzoic acid in oxygen at T=298.15 K was determined to be -4795.9±1.3 kJ mol-1 using combustion calorimetry. The derived standard molar enthalpies of formation of 3,4,5-trimethoxybenzoic acid in crystalline and gaseous states at T=298.15 K, ΔfHm Θ (cr) and ΔfHm Θ (g), were -852.9±1.9 and -721.7±2.0 kJ mol-1, respectively. The reliability of the results obtained was commented upon and compared with literature values. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
1. Results of thermodynamic and kinetic investigations for the different crystalline calcium carbonate phases and their phase transition data are reported and summarized (vaterite: V; aragonite: A; calcite: C). A→C: T tr=455±10°C, Δtr H=403±8 J mol–1 at T tr, V→C: T tr=320–460°C, depending on the way of preparation,Δtr H=–3.2±0.1 kJ mol–1 at T trtr H=–3.4±0.9 kJ mol–1 at 40°C, S V Θ= 93.6±0.5 J (K mol)–1, A→C: E A=370±10 kJ mol–1; XRD only, V→C: E A=250±10 kJ mol–1; thermally activated, iso- and non-isothermal, XRD 2. Preliminary results on the preparation and investigation of inhibitor-free non-crystalline calcium carbonate (NCC) are presented. NCC→C: T tr=276±10°C,Δtr H=–15.0±3 kJ mol–1 at T tr, T tr – transition temperature, Δtr H – transition enthalpy, S Θ – standard entropy, E A – activation energy. 3. Biologically formed internal shell of Sepia officinalis seems to be composed of ca 96% aragonite and 4% non-crystalline calcium carbonate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The standard (p0=0.1 MPa) molar enthalpies of formation, ΔfHm0, for crystalline phthalimides: phthalimide, N-ethylphthalimide and N-propylphthalimide were derived from the standard molar enthalpies of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as, respectively, – (318.0±1.7), – (350.1±2.7) and – (377.3±2.2) kJ mol–1. The standard molar enthalpies of sublimation, ΔcrgHm0, at T=298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapour pressures for phthalimide, as (106.9±1.2) kJ mol–1 and from high temperature Calvet microcalorimetry for phthalimide, N-ethylphthalimide and N-propylphthalimide as, respectively, (106.3±1.3), (91.0±1.2) and (98.2±1.4) kJ mol–1. The derived standard molar enthalpies of formation, in the gaseous state, are analysed in terms of enthalpic increments and interpreted in terms of molecular structure.  相似文献   

7.
TTT Cure Diagram     
Curing reactions of the epoxy system consisting of a diglycidyl ether of bisphenol A (BADGE n=0) and m-xylylenediamine (m-XDA) were studied to calculate time-temperature-transformation (TTT) isothermal cure diagram for this system. Gel times were measured as a function of temperature using solubility test. Differential scanning calorimetry (DSC) was used to calculate the vitrification times. DSC data show a one-to-one relationship between T g and fractional conversion, a independent of cure temperature. As a consequence, T g can be used as a measure of conversion. The activation energy for the polymerization overall reaction was calculated from the gel times obtained using the solubility test (41.5 kJ mol-1). This value is similar to the results obtained for other similar epoxy systems. Isoconversion contours were calculated by numerical integration of the best fitting kinetic model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Condensed and gas phase enthalpies of formation of 3:4,5:6-dibenzo-2-hydroxymethylene-cyclohepta-3,5-dienenone (1, (−199.1 ± 16.4), (−70.5 ± 20.5) kJ mol−1, respectively) and 3,4,6,7-dibenzobicyclo[3.2.1]nona-3,6-dien-2-one (2, (−79.7 ± 22.9), (20.1 ± 23.1) kJ mol−1) are reported. Sublimation enthalpies at T=298.15 K for these compounds were evaluated by combining the fusion enthalpies at T = 298.15 K (1, (12.5 ± 1.8); 2, (5.3 ± 1.7) kJ mol−1) adjusted from DSC measurements at the melting temperature (1, (T fus, 357.7 K, 16.9 ± 1.3 kJ mol−1)); 2, (T fus, 383.3 K, 10.9 ± 0.1) kJ mol−1) with the vaporization enthalpies at T = 298.15 K (1, (116.1 ± 12.1); 2, (94.5 ± 2.2) kJ mol−1) measured by correlation-gas chromatography. The vaporization enthalpies of benzoin ((98.5 ± 12.5) kJ mol−1) and 7-heptadecanone ((94.5 ± 1.8) kJ mol−1) at T = 298.15 K and the fusion enthalpy of phenyl salicylate (T fus, 312.7 K, 18.4 ± 0.5) kJ mol−1) were also determined for the correlations. The crystal structure of 1 was determined by X-ray crystallography. Compound 1 exists entirely in the enol form and resembles the crystal structure found for benzoylacetone.  相似文献   

9.
Diaminoguanidine nitrate (DAGN) and triaminoguanidine nitrate (TAGN),potential energetic materials in emerging propulsion technology with high mass impetus at low isochoric flame temperature have been studied as regards kinetics and mechanism of thermal decomposition using thermogravimetry (TG), differential thermal analysis (DTA),infrared spectroscopy (IR) and hot stage microscopy. Kinetics of thermolysis has been followed by isothermal TG and IR. For the initial stage of thermolysis of DAGN the best linearity with a correlation coefficient of 0.9976 was obtained for the Avrami-Erofe'evequation, n=2, by isothermal TG. The activation energy was found to be 130 kJ mol–1 and logA=11.4. The initial stage of thermolysis of TAGN also obeyed the Avrami-Erofe'ev equation, n=2, with a correlation coefficient of 0.9975by isothermal TG and the kinetic parameters are E=160.0 kJ mol–1 and logA=16.0. High temperature IR spectra showed exquisite preferential loss in intensity of the NH2, NH, N–N stretching and CNN bending. Spectroscopic and other results favour deamination reaction involving the rupture of the N–N bond as the primary step in the thermal decomposition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Thermodynamic stability of CdMoO4 was determined by measuring the vapor pressures of Cd and MoO3 bearing gaseous species. Th vaporization reaction could be described as CdMoO4(s)+MoO2(s) =Cd(g)+2/n(MoO3)n (n=3, 4 and 5). The vapor pressures of the cadmium (p Cd) and trimer (p (MoO3)3) measured in the temperature range 987≤T/K≤1111 could be expressed, respectively, as ln (p Cd/Pa) = –32643.9/T+29.46±0.08 and ln(p (MoO3)3/Pa) = –32289.6/T+29.28±0.08. The standard molar Gibbs free energy of formation of CdMoO4(s), derived from the vaporization results could be expressed by the equations: °f G CdMoO4 (s) 0= –1002.0+0.267T±14.5 kJ mol–1 (987≤T/K≤1033) and °f G CdMoO4 (s) 0 = –1101.9+0.363T±14.4 kJ mol–1 (1044≤T/K≤1111). The standard enthalpy of formation of CdMoO4(s) was found to be –1015.4±14.5 kJ mol–1 .  相似文献   

11.
Summary The third-law method has been applied to determine the enthalpies, ΔrHT0, for dehydration reactions of kaolinite, muscovite and talc. The ΔrHT0values measured in the equimolar (in high vacuum) and isobaric (in the presence of water vapour) modes (980±15, 3710±39 and 2793±34 kJ mol-1, for kaolinite, muscovite and talc, respectively) practically coincide if to take into account the strong self-cooling effect in vacuum. This fact strongly supports the mechanism of dissociative evaporation of these compounds in accordance with the reactions (primary stages): Al2O3·2SiO2·2H2O(s)→Al2O3(g)↓+2SiO2(g)↓+2H2O(g); K2O·3Al2O3·6SiO2·2H2O(s) →K2O(g)↓+3Al2O3(g)↓+6SiO2(g)↓+2H2O(g) and 3MgO·4SiO2·H2O(s) →3MgO(g)↓+4SiO2(g)↓+H2O(g). The values of the Eparameter deduced from these data for equimolar and isobaric modes of dehydration are as follows: 196 and 327 kJ mol-1for kaolinite, 309 and 371 kJ mol-1for muscovite and 349 and 399 kJ mol-1for talc. These values are in agreement with quite a few early results reported in the literature in 1960s.  相似文献   

12.
The structural relaxation and viscosity behavior of Ge38S62 glass has been studied by thermomechanical analysis. The relaxation response to any thermal history is well described by the Tool-Naraynaswamy-Moynihan model. The apparent activation energy of structural relaxation is very close to the activation energy of viscous flow (Eη=478±12 kJ mol-1). However, the activation energy of crystal growth obtained by optical microscopy is about one half of this value. Similar result has been obtained from isothermal DSC measurement (Ea=220±20 kJ mol-1). The kinetic analysis of these data reveals interface controlled crystal growth with zero nucleation rate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Yttrium orthoborate crystallizes in the vaterite-type structure and has two polymorphous forms, viz. a low- und a high temperature one. DTA measurements of YBO3 confirmed a reversible phase transition with a large thermal hysteresis. The phase transition has been accurately characterized by the application of different heating and cooling rates (β). Consequently, the extrapolation of the experimental data to zero β yields the transition points at 986.9°C for the heating up and at 596.5°C for the cooling down cycle. These values correspond to samples just after treatment at 1350°C. For samples with a different ‘thermal history’ other phase transition temperatures are observed, (e.g. after having performed several heating and cooling cycles). The linear relationship between the associated DTA signal ΔT=T onsetT offset and the square root of the heating rate β was confirmed, but the relation between T onset and square root of β is not found here. From the empirical data a good linear fitting between T onset and ln(β+1) can be derived. From the kinetic analysis (Kissinger method) of the phase transformation of YBO3 an apparent activation energy of about 1386 kJ mol–1 for heating and of about 568 kJ mol–1 for cooling can be determined  相似文献   

14.
Results of phase transformations, enthalpy released and specific heat of Ge22Se78–xBix(x=0, 4 and 8) chalcogenide glasses, using differential scanning calorimetry (DSC), under non-isothermal condition have been reported and discussed. The glass transition temperature, T g, is found to increase with an average coordination number and heating rates. Following Gibbs—Dimarzio equation, the calculated values of T g (i.e. 462.7, 469.7 and 484.4 K) and the experimental values (i.e. 463.1, 467.3 and 484.5 K) increase with Bi concentration. Both values of T g, at a heating rate of 5 K min–1, are found to be in good agreement. The glass transition activation energy increases i.e. 102±2, 109±3 and 115±8 kJ mol–1 with Bi concentration. The demand for thermal stability has been ensured through the temperature difference T cT g and the enthalpy released during the crystallization process. Below T g, specific heat has been observed to be temperature independent but highly compositional dependent. The growth kinetic has been investigated using the Kissinger, Ozawa, Matusita and modified JMA equations. Results indicate that the crystallization ability is enhanced, the activation energy of crystallization increases with increasing the Bi content and the crystal growth of these glasses occur in 3 dimensions.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
The molar heat capacities of the room temperature ionic liquid 1-butylpyridinium tetrafluoroborate (BPBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C p,m [J K−1 mol−1]=181.43+51.297X −4.7816X 2−1.9734X 3+8.1048X 4+11.108X 5 [X=(T−135)/55] for the solid phase (80–190 K), C p,m [J K−1 mol−1]= 349.96+25.106X+9.1320X 2+19.368X 3+2.23X 4−8.8201X 5 [X=(T−225)/27] for the glass state (198–252 K), and C p,m[J K−1 mol−1]= 402.40+21.982X−3.0304X 2+3.6514X 3+3.4585X 4 [X=(T−338)/52] for the liquid phase (286–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BPBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BPBF4 was observed at 194.09 K, the enthalpy and entropy of the glass transition were determined to be ΔH g=2.157 kJ mol−1 and ΔS g=11.12 J K−1 mol−1, respectively. The result showed that the melting point of the BPBF4 is 279.79 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 8.453 kJ mol−1 and ΔS m=30.21 J K−1 mol−1. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BPBF4 was determined to be Δc H m0 = −5451±3 kJ mol−1. The standard molar enthalpy of formation of BPBF4 was evaluated to be Δf H m0 = −1356.3±0.8 kJ mol−1 at T=298.150±0.001 K.  相似文献   

16.
The thermal decomposition behavior of 3,4,5-triamino-1,2,4-triazole dinitramide was measured using a C-500 type Calvet microcalorimeter at four different temperatures under atmospheric pressure. The apparent activation energy and pre-exponential factor of the exothermic decomposition reaction are 165.57 kJ mol−1 and 1018.04 s−1, respectively. The critical temperature of thermal explosion is 431.71 K. The entropy of activation (ΔS ), enthalpy of activation (ΔH ), and free energy of activation (ΔG ) are 97.19 J mol−1 K−1, 161.90 kJ mol−1, and 118.98 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 422.28 K. The specific heat capacity of 3,4,5-triamino-1,2,4-triazole dinitramide was determined with a micro-DSC method and a theoretical calculation method. Specific heat capacity (J g−1 K−1) equation is C p = 0.252 + 3.131 × 10−3  T (283.1 K < T < 353.2 K). The molar heat capacity of 3,4,5-triamino-1,2,4-triazole dinitramide is 264.52 J mol−1 K−1 at 298.15 K. The adiabatic time-to-explosion of 3,4,5-triamino-1,2,4-triazole dinitramide is calculated to be a certain value between 123.36 and 128.56 s.  相似文献   

17.
The heat capacities (C p,m) of 2-amino-5-methylpyridine (AMP) were measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 398 K. A solid-liquid phase transition was found in the range from 336 to 351 K with the peak heat capacity at 350.426 K. The melting temperature (T m), the molar enthalpy (Δfus H m0), and the molar entropy (Δfus S m0) of fusion were determined to be 350.431±0.018 K, 18.108 kJ mol−1 and 51.676 J K−1 mol−1, respectively. The mole fraction purity of the sample used was determined to be 0.99734 through the Van’t Hoff equation. The thermodynamic functions (H T-H 298.15 and S T-S 298.15) were calculated. The molar energy of combustion and the standard molar enthalpy of combustion were determined, ΔU c(C6H8N2,cr)= −3500.15±1.51 kJ mol−1 and Δc H m0 (C6H8N2,cr)= −3502.64±1.51 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. The standard molar enthalpy of formation of the crystalline compound was derived, Δr H m0 (C6H8N2,cr)= −1.74±0.57 kJ mol−1.  相似文献   

18.
Isothermal decomposition kinetic of three lanthanide mixed complexes with the general formula of Ln(thd)3phen (where Ln=Nd3+, Sm3+ or Er3+, thd=2,2,6,6-tetramethyl-3,5-heptanodione and phen=1,10-phenanthroline) has been studied in this work. The powders were characterized by their melting point, elemental analysis, FTIR spectroscopy and thermogravimetry. The isothermal TG curves have been recorded under the same conditions at 265–285, 265–285 and 250–270°C for Nd(thd)3phen, Sm(thd)3phen and Er(thd)3phen, respectively. The kinetic parameters, i.e. activation energy, reaction order and frequency factor were obtained through the technique of lineal regression using the relation g(α)=kt+g 0. The analysis was done at decomposed fractions between 0.10–0.90. The values of activation energy were: 114.10, 114.24 and 115.04 kJ mol–1 for the Nd(thd)3phen, Sm(thd)3phen and Er(thd)3phen complexes, respectively. The kinetic models that best described the isothermal decomposition reaction the complexes were R1 and R2. The values of activation energy suggests the following decreasing order of stability: Nd(thd)3phen<Sm(thd)3phen<Er(thd)3phen.  相似文献   

19.
The thermal behaviour of salicylsalicylic acid (CAS number 552-94-3) was studied by differential scanning calorimetry (DSC). The endothermic melting peak and the fingerprint of the glass transition were characterised at a heating rate of 10°C min-1. The melting peak showed an onset at T on = 144°C (417 K) and a maximum intensity at T max = 152°C (425 K), while the onset of the glass transition signal was at T on = 6°C. The melting enthalpy was found to be ΔmH = 28.9±0.3 kJ mol-1, and the heat capacity jump at the glass transition was ΔC P = 108.1±0.1 J K-1mol-1. The study of the influence of the heating rate on the temperature location of the glass transition signal by DSC, allowed the determination of the activation energy at the glass transition temperature (245 kJ mol-1), and the calculation of the fragility index of salicyl salicylate (m = 45). Finally, the standard molar enthalpy of formation of crystalline monoclinic salicylsalicylic acid at T = 298.15 K, was determined as ΔfHm o(C14H10O5, cr) = - (837.6±3.3) kJ mol-1, by combustion calorimetry. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Temperature dependence of viscosity of title glasses (x=0, 2, 4, 6, 8, 10, abbreviated as M0, M2, M4, M6, M8, and M10, respectively) was measured by rotational viscometry (high temperature region: 102−106.5 dPas) and thermomechanical analysis (low temperature region: 108.5−1011.5 dPas) and described by the Vogel-Fulcher-Tammann equation. The MgO/CaO equimolar substitution (i.e. the increasing x value) smoothly shifts the high temperature viscosity to higher values. In the low temperature region the mixed alkali effect is demonstrated, and the highest viscosities are observed for the glasses M0 and M10. In the low temperature range the activation energy of viscous flow linearly decreases with the increasing x value (E act/kJ mol−1=479−9.0x). No significant dependence of activation energy on x was found in the high temperature range (E act/kJ mol−1=238.1±4.2). The structural relaxation was measured by thermomechanical experiment and theoretically interpreted in the frame of Tool-Narayanaswamy-Mazurin’s model. The broadening of the relaxation time spectrum was observed for the calcium-magnesium glasses in comparison with the pure calcium or magnesium glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号