首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O1s core level binding energies of oxygen atoms in bulk ZnO, at different ZnO surfaces, and in some Zn oxo compounds were calculated by means of wave function based quantum chemical ab initio methods. Initial and final state effects were obtained by Koopmans' theorem and at the DeltaSCF level, respectively. After correction for scalar relativistic effects and electron correlation, the calculated XPS peak positions are in excellent agreement with the available experimental data for all systems included in the present study. The O1s core level shifts between an isolated H2O molecule and the Zn oxo compounds or ZnO, as well as between oxygen atoms in bulk ZnO and at various ZnO surfaces, can be understood by means of Madelung potentials and electronic relaxation or screening. XPS spectra were calculated for various cluster models which are designed to describe different possibilities of stabilizing the polar O-terminated ZnO(0001) surface by the adsorption of H atoms. The experimental spectra are only compatible with the theoretical results for the fully hydroxylated H-ZnO(0001) surface exhibiting a (1x1) surface structure.  相似文献   

2.
La2O3/ZnO催化剂体系在以二氧化碳作为氧化剂的甲烷氧化偶联反应中具有很高的C2烃选择性和稳定性.采用CO2-TPD-MS和TPR技术考察了La2O3/ZnO对CO2的吸附性质及其氧化还原行为.结果表明:(1)La2O3/ZnO催化剂体系存在着强、弱两种碱中心,其中弱碱中心数量随样品中La2O3含量增加而减少,强碱中心强度随样品中La2O3含量增加而增强.(2)由于组分相互作用,高温下,La2O3/ZnO易产生晶格氧空位,使之对CO2的吸附增强,吸附后的CO2与晶格氧作用形成立方晶型La2O2CO3.(3)La2O3/ZnO表面的La3+和Zn2+可以部分被还原,由于组分间的相互作用,使得二者的还原都较单一组分存在时更难.(4)H2-CO2-H2氧化还原循环实验表明,La2O3/ZnO表面被部分还原后,CO2可以将部分被还原的表面再氧化.在此基础上对La2O3/ZnO催化剂上甲烷与CO2转化为C2烃的机制也进行了讨论.  相似文献   

3.
4.
Although synthetic investigations of inorganic nanomaterials had been carried out extensively over the past decade, few of them have been devoted to fabrication of complex nanostructures that comprise multicomponents/phases (i.e., composite nanobuilding blocks), especially in the area of structural/morphological architecture. In this work, nanobelts of a protonated pentatitanate (H(2)Ti(5)O(11).H(2)O) were synthesized hydrothermally for the first time. Two technologically important transition-metal-oxides TiO(2) and ZnO were then grown respectively or sequentially onto the surface of the as-prepared nanobelts in aqueous mediums. With a main emphasis on organizational manipulation, the present investigation examines general issues of morphological complexity, synthetic interconvertibility, and material combinability related to fabrication of inorganic nanocomposites. Using this model material system, we demonstrate that complex binary and tertiary composite building blocks of TiO(2)/H(2)Ti(5)O(11).H(2)O, ZnO/H(2)Ti(5)O(11).H(2)O, ZnO/TiO(2)/H(2)Ti(5)O(11).H(2)O, and ZnO/TiO(2) can be architected stepwise in solution. Structural features of these nanocomposites have also been addressed.  相似文献   

5.
张跃  孙薇  石雷  孙琪 《催化学报》2012,33(6):1055-1060
研究了ZnO或K2O助剂对Cu/SiO2-Al2O3上丙三醇和苯胺气相催化合成3-甲基吲哚反应的促进作用,采用X射线衍射、透射电子显微镜、H2程序升温还原、NH3程序升温脱附以及热重-差热分析等技术对催化剂进行了表征.结果表明,适量ZnO或K2O的加入可明显提高催化剂的活性、选择性和稳定性,其中以ZnO的促进作用更强.ZnO不仅能增强活性组分Cu与SiO2-Al2O3载体之间的相互作用、提高Cu在载体表面的分散度,而且可有效抑制反应过程中Cu粒子的烧结;而K2O的加入却降低了Cu分散度,但也对反应过程中Cu粒子的烧结有所抑制.ZnO或K2O的加入均不同程度地增加了Cu/SiO2-Al2O3催化剂的弱酸中心数量,从而促进3-甲基吲哚的生成.  相似文献   

6.
The adsorption, desorption, and reactions of ethanol have been investigated on pure and promoted ZSM-5 catalysts. FTIR spectroscopy indicated the formation of a strongly bonded ethoxy species on ZSM-5(80) at 300 K. TPD experiments following the adsorption of ethanol on both ZSM-5 and Mo2C/ZSM-5 have shown desorption profiles corresponding to unreacted ethanol and decomposition products (H2O, H2, CH3CHO, C4H10O, and C2H4). The main reaction pathway of ethanol on pure ZSM-5 is the dehydration reaction yielding ethylene, small amounts of hydrocarbons, and aromatics. Deposition of different additives, such as Mo2C, ZnO, and Ga2O3 on zeolite, greatly promoted the formation of benzene and toluene at 773-973 K, very likely by catalyzing the aromatization of ethylene formed in the dehydration process of ethanol. Separate studies of the reaction of ethylene revealed that the previous additives markedly enhanced the selectivity and the yield of aromatics on ZSM-5.  相似文献   

7.
The catalytic performance of methanol reformation using Cu/ZnO/Al2O3 was investigated at low temperature. The operation conditions, such as composition of Cu, Zn, and Al, temperature, molar ratio of H2O/CH3OH, weight hourly space velocity, catalyst weight, and kind and flow rate of carrier gas (helium and air), were evaluated to obtain the optimum reaction condition. The catalysts were prepared by oxalic coprecipitation, coprecipitation, and polyol method. The weight composition of Cu, Zn, and Al prepared by oxalic coprecipitation was 15:15:5 by high-throughput screening of combinatorial chemistry method, which was the best Cu/ZnO/Al2O3 catalyst. The prepared catalysts showed high activity and selectivity towards hydrogen formation. The methanol conversion, production rate, and volumetric percentage of hydrogen using this best catalyst were larger than 95%, 0.65 mol/h x g and 59%, respectively, and the CO volumetric percentage was smaller than 0.22% when the reaction temperature was 240 degrees C. The size and dispersity of copper, and the activity and turnover frequency of the catalyst were calculated as well.  相似文献   

8.
The reactivity of a series of Zn(Cys)(4) zinc finger model peptides towards H(2)O(2) and O(2) has been investigated. The oxidation products were identified by HPLC and ESI-MS analysis. At pH<7.5, the zinc complexes and the free peptides are oxidised to bis-disulfide-containing peptides. Above pH 7.5, the oxidation of the zinc complexes by H(2)O(2) also yields sulfinate- and sulfonate-containing overoxidised peptides. At pH 7.0, monitoring of the reactions between the zinc complexes and H(2)O(2) by HPLC revealed the sequential formation of two disulfides. Several techniques for the determination of the rate constant for the first oxidation step corresponding to the attack of H(2)O(2) by the Zn(Cys)(4) site have been compared. This rate constant can be reliably determined by monitoring the oxidation by HPLC, fluorescence, circular dichroism or absorption spectroscopy in the presence of excess ethyleneglycol bis(2-aminoethyl ether)tetraacetic acid. In contrast, monitoring of the release of zinc with 4-(2-pyridylazo)resorcinol or of the thiol content with 5,5'-dithiobis(2-nitrobenzoate) did not yield reliable values of this rate constant for the case in which the formation of the second disulfide is slower than the formation of the first. The kinetic measurements clearly evidence a protective effect of zinc on the oxidation of the cysteines by both H(2)O(2) and O(2), which points to the fact that zinc binding diminishes the nucleophilicity of the thiolates. In addition, the reaction between the zinc finger and H(2)O(2) is too slow to consider zinc fingers as potential sensors for H(2)O(2) in cells.  相似文献   

9.
采用氨浸法制备了不同V2O5含量的纳米V2O5/ZnO光催化剂,并用X射线衍射、比表面积测定、透射电镜、X射线光电子能谱和漫反射紫外-可见光谱测定了催化剂的晶型、比表面积、形貌尺寸、表面组成和光谱特征.以壬基酚聚氧乙烯醚(NPE-10)为模型污染物,分别在紫外光和可见光照射下考察了光催化剂的催化活性.结果表明,随着V2O5含量的增加,V2O5/ZnO的粒径逐渐减小,比表面积逐渐增大.与纳米ZnO样品相比,V2O5/ZnO中V2p的结合能减小,而Zn2p和O1s的结合能增大,V2O5/ZnO表面的羟基氧和吸附氧含量增加.n(V)/n(Zn)=2·5%的V2O5/ZnO光催化剂样品的催化活性最高(在紫外光和可见光照射3h后,NPE-10降解率分别约为79%和62%).  相似文献   

10.
胡春丽  陈勇  李俊篯 《结构化学》2009,28(2):240-244
The adsorption and decomposition of H2O on GaN(0001) surface have been explored employing density functional theory (DFT). Two distinct adsorption features of H2O on GaN(0001) corresponding to molecular adsorption and H-OH dissociative adsorption are revealed by our calculations. The activities of the surface reactions of H2O on GaN(0001) surface are investigated. For the stepwise processes of H2O decomposition into H2 in gas phase and adsorbed O atom (H2O(g)→H2O(chem)→OH(chem) + H(chem)→2H(chem) + O(chem)→H2(g) + O(chem)), the first and second steps are facile and can even occur at room temperature; while the last two have high barriers and thus are difficult to proceed, especially the fourth step is endothermic. In short, H2O adsorption and decomposition into H2 in gas phase and adsorbed O atom on GaN(0001) surface are exothermic by -43.98 kcal/mol.  相似文献   

11.
The surface species formed from the reaction of CO+H(2)O and CO+O(2) and decomposition of HCOOH on Au incorporated into H-mordenite zeolite have been studied by means of in situ FTIR spectroscopy. On H-mordenite, a bidentate formate species (2912, 1536, and 1390 cm(-1)) is produced upon exposure to the CO+H(2)O gas mixture at 323 K, as well as different carbonate-like species (1956, 1852, 1705, and 1360 cm(-1)). The latter species was extensively formed in a short time and was responsible for hindering the CO(2) adsorbed species. However, Au/H-mordenite presented different vibration modes of formate species with a high emphasis on the monodentate ones (2950, 2916, 2896, 1690, and 1340 cm(-1)). The HCOOH adsorption on Au/H-mordenite showed two bands at 1622 and 1590 cm(-1) of the nu(as)(OCO) species, suggesting the formation of two types of formate species. The decomposition rate of the formate species formed on Au moieties was faster than that formed on H-mordenite. This was consistent with the calculated activation energies of CO(2) formation that showed a lower value (40.1 kJ/mol) on the former sample than on the latter one (63.3 kJ/mol). A dehydrogenation mechanism is proposed (HCOOH-->H(2)+CO(2)) for the decomposition of HCOOH on the Au/H-mordenite catalyst. On the other hand, the Au/H-mordenite catalyst activated the CO oxidation reaction. This reaction proceeded mainly through the formation of carboxylate species at first, which tended to obviate with time, preferring the formate species. The latter species resulted from the interaction of CO with OH stretching of the zeolite assisted by the presence of gas phase O(2). The formate species is further decomposed with time to carbonate species. Copyright 2000 Academic Press.  相似文献   

12.
Wu MC  Lee CS 《Inorganic chemistry》2006,45(24):9634-9636
A novel two-dimensional coordination polymer Zn(tda)H2O [tda = S(CH(2)COO)2(2-)] was synthesized under hydrothermal conditions. The compound crystallized in monoclinic space group P2(1) with a = 16.4154(17) A, b = 5.2133(6) A, c = 16.4210(17) A, beta = 114.165(2) degrees , V = 1282.1(2) A3, and Z = 8. The structure features two-dimensional, noncentrosymmetric networks with a pseudohexagonal network of Zn2+ coordinated by tda and water molecules. Zn(tda)H2O decomposed at T > 300 degrees C to form a ZnO sponge with a surface area approximately 40 m2/g, which makes it an attractive precursor for nanoporous ZnO.  相似文献   

13.
Both associative and dissociative H(2)O adsorption on SnO(2)(110), TiO(2)(110), and Ti-enriched Sn(1-x)Ti(x)O(2)(110) surfaces have been investigated at low ((1)/(12) monolayer (ML)) and high coverage (1 ML) by density functional theory calculations using the Gaussian and plane waves formalism. The use of a large supercell allowed the simulation at low symmetry levels. On SnO(2)(110), dissociative adsorption was favored at all coverages and was accompanied by stable associative H(2)O configurations. Increasing the coverage from (1)/(12) to 1 ML stabilized the (associatively or dissociatively) adsorbed H(2)O on SnO(2)(110) because of the formation of intermolecular H bonds. In contrast, on TiO(2)(110), the adsorption of isolated H(2)O groups ((1)/(12) ML) was more stable than at high coverage, and the favored adsorption changed from dissociative to associative with increasing coverage. For dissociative H(2)O adsorption on Ti-enriched Sn(1-x)Ti(x)O(2)(110) surfaces with Ti atoms preferably located on 6-fold-coordinated surface sites, the analysis of the Wannier centers showed a polarization of electrons surrounding bridging O atoms that were bound simultaneously to 6-fold-coordinated Sn and Ti surface atoms. This polarization suggested the formation of an additional bond between the 6-fold-coordinated Ti(6c) and bridging O atoms that had to be broken upon H(2)O adsorption. As a result, the H(2)O adsorption energy initially decreased, with increasing surface Ti content reaching a minimum at 25% Ti for (1)/(12) ML. This behavior was even more accentuated at high H(2)O coverage (1 ML) with the adsorption energy decreasing rapidly from 145.2 to 101.6 kJ/mol with the surface Ti content increasing from 0 to 33%. A global minimum of binding energies at both low and high coverage was found between 25 and 33% surface Ti content, which may explain the minimal cross-sensitivity to humidity previously reported for Sn(1-x)Ti(x)O(2) gas sensors. Above 12.5% surface Ti content, the binding energy decreased with increasing coverage, suggesting that the partial desorption of H(2)O is facilitated at a high fractional coverage.  相似文献   

14.
采用低温N2吸附、XRD、MES、CO-TPR和H2-DTG研究了Zn(100 gFe/x gZn, x=7~100)助剂对 Fischer-Tropsch (F-T) 合成Fe基催化剂的织构性质、还原行为以及相变结构的影响;在H2/CO=2.0、260 ℃、1.5 MPa和4000 mL/(g·h) 条件下在固定床反应器上考察了Zn助剂含量对Fe基催化剂F-T合成反应活性、烃产物选择性和运行稳定性的影响。研究结果表明,随着Zn含量的增加,氧化态催化剂的物相由α-Fe2O3和ZnFe2O4逐渐向ZnFe2O4和ZnO转变,ZnFe2O4在催化剂中优先生成,只有在超出其计量比1∶2之后才有ZnO出现。由于ZnFe2O4较为稳定,能够促进催化剂中Fe物相的分散,导致比表面积增加。在还原和反应态催化剂中,ZnFe2O4一方面抑制催化剂的过度还原和碳化;另一方面表现为稳定活性相铁碳化物。催化剂的F-T反应性能评价结果表明,纯铁催化剂由于铁碳化物氧化而迅速失活,而Zn助剂催化剂却由于ZnFe2O4的稳定作用,活性较为稳定。同时,由于催化剂在反应初相变的影响,导致Zn助剂催化剂的初始烯烃选择性随着Zn含量的增加而增加,在相态稳定之后选择性趋于一致。  相似文献   

15.
HD adsorption on ZnO surfaces has been studied by infrared spectroscopy as a function of ZnO temperature. At 300 K, the configuration Zn(H)—O(D) is preferred. as expected on thermodynamic grounds. As the temperature is lowered, the configuration Zn(D)—O(H) becomes preferred on kinetic grounds. This behavior is consistent with a model in which the transition state for HD adsorption is characterized by nearly complete dissociation of the HD bond.  相似文献   

16.
The cathode-active materials, Li1+yMxMn2-xO4 (M = Al, Co, Ni, Zn, y = 0.02, x = 0.02) powder, were synthesized by sol-gel method using LiOH, Mn(NO3)2 as the starting materials, citric acid as a carrier and Al(NO3)3·9H2O or Co(NO3)2·6H2O or Ni(NO3)2·6H2O or Zn(NO3)2·6H2O as dopants. The influence of different doping elements on the structural properties of the as-prepared samples was investigated by X-ray diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM). X-ray diffraction patterns of the prepared samples were identified as the spinel structure with space group Fd3m. The grain size increases gradually as the sintering temperature rises and corresponding activation energies for the grain growth have been estimated using Arrhenius’ empirical relation.  相似文献   

17.
The decomposition of methoxide (CH(3)O) on a PdZn alloy is considered to be the rate-limiting step of steam re-forming of methanol over a Pd/ZnO catalyst. Our previous density functional (DF) studies (Langmuir 2004, 20, 8068; Phys. Chem. Chem. Phys. 2004, 6, 4499) revealed only a very low propensity of defect-free flat (111) and (100) PdZn surfaces to promote C-H or C-O bond breaking of CH(3)O. Thus, we applied the same DF periodic slab-model approach to investigate these two routes of CH(3)O decomposition on PdZn(221) surfaces that expose Pd, (221)(Pd), and Zn, (221)(Zn), steps. C-H bond cleavage of CH(3)O is greatly facilitated on (221)(Pd): the calculated activation energy is dramatically reduced, to approximately 50 kJ mol(-1) from approximately 90 kJ mol(-1) on flat PdZn surfaces, increasing the rate constant by a factor of 10(8). The lower barrier is mainly due to a weaker interaction of the reactant CH(3)O and an enhanced interaction of the product CH(2)O with the substrate. The activation energy for C-O bond scission did not decrease on the (221)(Pd) step. On the (221)(Zn) step, the calculated reaction barriers of both decomposition routes are even higher than on flat surfaces, because of the stronger adsorption of CH(3)O. Steps (and other defects) appear to be crucial for methanol steam re-forming on Pd/ZnO catalyst; the stepped surface PdZn(221)(Pd) is a realistic model for studying the reactivity of this catalyst.  相似文献   

18.
The adsorption of H(2)O and its dissociation products, O, H, and OH, on Ag(100) has been studied using an ab initio embedding method. Results at different sites (atop, bridge, and hollow) are presented. The four-fold hollow site is found to be the most stable adsorption site for O, H, and OH, and the calculated adsorption energies are 87.1, 42.7, and 76.2 kcal mol(-1), respectively. The adsorption energy of water at the atop and bridge sites is almost identical with values of 11.1 and 12.0 kcal mol(-1), respectively. The formation of adsorbed OH species by adsorption of water on oxygen-precovered Ag(100) is predicted to be exothermic by 36 kcal mol(-1).  相似文献   

19.
The influence of 2,2'-bipyridine (bipy) on adsorption of zink ions onto a highly dispersed silica surface has been studied. The enhanced adsorption of zink ions onto silica surface from the solution containing 2,2'-bipyridine is explained by ternary surface complex formation, { identical withSiOH(-m)Zn(bipy)(n)((2-m)+)}. The adsorbed Zn(2+) and bipy concentrations were measured at the adsorption from solutions with different ratios of Zn : bipy. The equilibrium reaction constants of binary and ternary complexes have been calculated using the constant capacitance model. The potentiometric titration data were used in order to determine the H(+)/Zn(2+) exchange stoichiometry. The composition of formed surface complexes has been confirmed with their UV absorption spectra. Copyright 2001 Academic Press.  相似文献   

20.
A theoretical study on the mechanism of the OH reactions with HCN and CH(3)CN, in the presence of O2, is presented. Optimum geometries and frequencies have been computed at BHandHLYP/6-311++G(2d,2p) level of theory for all stationary points. Energy values have been improved by single-point calculations at the above geometries using CCSD(T)/6-311++G(2d,2p). The initial attack of OH to HCN was found to lead only to the formation of the HC(OH)N adduct, while for CH(3)CN similar proportions of CH(2)CN and CH(3)C(OH)N are expected. A four-step mechanism has been proposed to explain the OH regeneration, experimentally observed for OH + CH(3)CN reaction, when carried out in the presence of O2. The mechanism steps are as follows: (1) OH addition to the C atom in the CN group, (2) O2 addition to the N atom, (3) an intramolecular H migration from OH to OO, and (4) OH elimination. This mechanism is in line with the one independently proposed by Wine et al. for HCN. The results obtained here suggest that for the OH + HCN reaction, the OH regeneration might occur even in larger extension than for OH + CH(3)CN reaction. The agreement between the calculated data and the available experimental evidence on the studied reactions seems to validate the mechanism proposed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号